Cargando…

Sensor Drift Compensation Based on the Improved LSTM and SVM Multi-Class Ensemble Learning Models

Drift is an important issue that impairs the reliability of sensors, especially in gas sensors. The conventional method usually adopts the reference gas to compensate for the drift. However, its classification accuracy is not high. We propose a supervised learning algorithm that is based on multi-cl...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Xia, Li, Pengfei, Xiao, Kaitai, Meng, Xiangning, Han, Lu, Yu, Chongchong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767085/
https://www.ncbi.nlm.nih.gov/pubmed/31492034
http://dx.doi.org/10.3390/s19183844

Ejemplares similares