Cargando…
Navigation in Unknown Dynamic Environments Based on Deep Reinforcement Learning
In this paper, we propose a novel Deep Reinforcement Learning (DRL) algorithm which can navigate non-holonomic robots with continuous control in an unknown dynamic environment with moving obstacles. We call the approach MK-A3C (Memory and Knowledge-based Asynchronous Advantage Actor-Critic) for shor...
Autores principales: | Zeng, Junjie, Ju, Rusheng, Qin, Long, Hu, Yue, Yin, Quanjun, Hu, Cong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767106/ https://www.ncbi.nlm.nih.gov/pubmed/31491927 http://dx.doi.org/10.3390/s19183837 |
Ejemplares similares
-
RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments
por: Mackay, Andrew K., et al.
Publicado: (2022) -
Deep Reinforcement Learning Approach with Multiple Experience Pools for UAV’s Autonomous Motion Planning in Complex Unknown Environments
por: Hu, Zijian, et al.
Publicado: (2020) -
Navigational Behavior of Humans and Deep Reinforcement Learning Agents
por: Rigoli, Lillian M., et al.
Publicado: (2021) -
The Navigation of Mobile Robot in the Indoor Dynamic Unknown Environment Based on Decision Tree Algorithm
por: Yan, Yupei, et al.
Publicado: (2022) -
An End-to-End Deep Reinforcement Learning-Based Intelligent Agent Capable of Autonomous Exploration in Unknown Environments
por: Ramezani Dooraki, Amir, et al.
Publicado: (2018)