Cargando…
Fault Feature Extraction and Diagnosis of Rolling Bearings Based on Enhanced Complementary Empirical Mode Decomposition with Adaptive Noise and Statistical Time-Domain Features
In this paper, a novel method is proposed to enhance the accuracy of fault diagnosis for rolling bearings. First, an enhanced complementary empirical mode decomposition with adaptive noise (ECEEMDAN) method is proposed by determining two critical parameters, namely the amplitude of added white noise...
Autores principales: | Zhan, Liwei, Ma, Fang, Zhang, Jingjing, Li, Chengwei, Li, Zhenghui, Wang, Tingjian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767346/ https://www.ncbi.nlm.nih.gov/pubmed/31546904 http://dx.doi.org/10.3390/s19184047 |
Ejemplares similares
-
Application of Parameter Optimized Variational Mode Decomposition Method in Fault Feature Extraction of Rolling Bearing
por: Liang, Tao, et al.
Publicado: (2021) -
Rolling Bearing Fault Diagnosis Based on Refined Composite Multi-Scale Approximate Entropy and Optimized Probabilistic Neural Network
por: Ma, Jianpeng, et al.
Publicado: (2021) -
Improved Dynamic Mode Decomposition and Its Application to Fault Diagnosis of Rolling Bearing
por: Dang, Zhang, et al.
Publicado: (2018) -
A Compound Fault Diagnosis for Rolling Bearings Method Based on Blind Source Separation and Ensemble Empirical Mode Decomposition
por: Wang, Huaqing, et al.
Publicado: (2014) -
Bearing Fault Diagnosis Using Piecewise Aggregate Approximation and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
por: Hu, Lei, et al.
Publicado: (2022)