Cargando…
One‐stage random effects meta‐analysis using linear mixed models for aggregate continuous outcome data
The vast majority of meta‐analyses uses summary/aggregate data retrieved from published studies in contrast to meta‐analysis of individual participant data (IPD). When the outcome is continuous and IPD are available, linear mixed modelling methods can be employed in a one‐stage approach. This allows...
Autores principales: | Papadimitropoulou, Katerina, Stijnen, Theo, Dekkers, Olaf M., le Cessie, Saskia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767371/ https://www.ncbi.nlm.nih.gov/pubmed/30523676 http://dx.doi.org/10.1002/jrsm.1331 |
Ejemplares similares
-
Meta‐analysis of continuous outcomes: Using pseudo IPD created from aggregate data to adjust for baseline imbalance and assess treatment‐by‐baseline modification
por: Papadimitropoulou, Katerina, et al.
Publicado: (2020) -
MA‐cont:pre/post effect size: An interactive tool for the meta‐analysis of continuous outcomes using R Shiny
por: Papadimitropoulou, Katerina, et al.
Publicado: (2022) -
Continuous(ly) missing outcome data in network meta-analysis: A one-stage
pattern-mixture model approach
por: Spineli, Loukia M, et al.
Publicado: (2021) -
Pattern-mixture model in network meta-analysis of binary missing outcome data: one-stage or two-stage approach?
por: Spineli, Loukia M., et al.
Publicado: (2021) -
A comparison of different methods to handle missing data in the context of propensity score analysis
por: Choi, Jungyeon, et al.
Publicado: (2018)