Cargando…

Diffusion‐weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer

BACKGROUND: Diffusion‐weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping is one of the most useful additional MRI parameters to improve diagnostic accuracy and is now often used in a multiparameric imaging setting for breast tumor detection and characterization. PURPOSE: To eva...

Descripción completa

Detalles Bibliográficos
Autores principales: Horvat, Joao V., Bernard‐Davila, Blanca, Helbich, Thomas H., Zhang, Michelle, Morris, Elizabeth A., Thakur, Sunitha B., Ochoa‐Albiztegui, R. Elena, Leithner, Doris, Marino, Maria A., Baltzer, Pascal A., Clauser, Paola, Kapetas, Panagiotis, Bago‐Horvath, Zsuzsanna, Pinker, Katja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767396/
https://www.ncbi.nlm.nih.gov/pubmed/30811717
http://dx.doi.org/10.1002/jmri.26697
_version_ 1783454907947286528
author Horvat, Joao V.
Bernard‐Davila, Blanca
Helbich, Thomas H.
Zhang, Michelle
Morris, Elizabeth A.
Thakur, Sunitha B.
Ochoa‐Albiztegui, R. Elena
Leithner, Doris
Marino, Maria A.
Baltzer, Pascal A.
Clauser, Paola
Kapetas, Panagiotis
Bago‐Horvath, Zsuzsanna
Pinker, Katja
author_facet Horvat, Joao V.
Bernard‐Davila, Blanca
Helbich, Thomas H.
Zhang, Michelle
Morris, Elizabeth A.
Thakur, Sunitha B.
Ochoa‐Albiztegui, R. Elena
Leithner, Doris
Marino, Maria A.
Baltzer, Pascal A.
Clauser, Paola
Kapetas, Panagiotis
Bago‐Horvath, Zsuzsanna
Pinker, Katja
author_sort Horvat, Joao V.
collection PubMed
description BACKGROUND: Diffusion‐weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping is one of the most useful additional MRI parameters to improve diagnostic accuracy and is now often used in a multiparameric imaging setting for breast tumor detection and characterization. PURPOSE: To evaluate whether different ADC metrics can also be used for prediction of receptor status, proliferation rate, and molecular subtype in invasive breast cancer. STUDY TYPE: Retrospective. SUBJECTS: In all, 107 patients with invasive breast cancer met the inclusion criteria (mean age 57 years, range 32–87) and underwent multiparametric breast MRI. FIELD STRENGTH/SEQUENCE: 3 T, readout‐segmented echo planar imaging (rsEPI) with IR fat suppression, dynamic contrast‐enhanced (DCE) T(1)‐weighted imaging, T(2)‐weighted turbo‐spin echo (TSE) with fatsat. ASSESSMENT: Two readers independently drew a region of interest on ADC maps on the whole tumor (WTu), and on its darkest part (DpTu). Minimum, mean, and maximum ADC values of both WTu and DpTu were compared for receptor status, proliferation rate, and molecular subtypes. STATISTICAL TESTS: Wilcoxon rank sum, Mann–Whitney U‐tests for associations between radiologic features and histopathology; histogram and q‐q plots, Shapiro–Wilk's test to assess normality, concordance correlation coefficient for precision and accuracy; receiver operating characteristics curve analysis. RESULTS: Estrogen receptor (ER) and progesterone receptor (PR) status had significantly different ADC values for both readers. Maximum WTu (P = 0.0004 and 0.0005) and mean WTu (P = 0.0101 and 0.0136) were significantly lower for ER‐positive tumors, while PR‐positive tumors had significantly lower maximum WTu values (P = 0.0089 and 0.0047). Maximum WTu ADC was the only metric that was significantly different for molecular subtypes for both readers (P = 0.0100 and 0.0132) and enabled differentiation of luminal tumors from nonluminal (P = 0.0068 and 0.0069) with an area under the curve of 0.685 for both readers. DATA CONCLUSION: Maximum WTu ADC values may be used to differentiate luminal from other molecular subtypes of breast cancer. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:836–846.
format Online
Article
Text
id pubmed-6767396
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-67673962019-10-03 Diffusion‐weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer Horvat, Joao V. Bernard‐Davila, Blanca Helbich, Thomas H. Zhang, Michelle Morris, Elizabeth A. Thakur, Sunitha B. Ochoa‐Albiztegui, R. Elena Leithner, Doris Marino, Maria A. Baltzer, Pascal A. Clauser, Paola Kapetas, Panagiotis Bago‐Horvath, Zsuzsanna Pinker, Katja J Magn Reson Imaging Original Research BACKGROUND: Diffusion‐weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping is one of the most useful additional MRI parameters to improve diagnostic accuracy and is now often used in a multiparameric imaging setting for breast tumor detection and characterization. PURPOSE: To evaluate whether different ADC metrics can also be used for prediction of receptor status, proliferation rate, and molecular subtype in invasive breast cancer. STUDY TYPE: Retrospective. SUBJECTS: In all, 107 patients with invasive breast cancer met the inclusion criteria (mean age 57 years, range 32–87) and underwent multiparametric breast MRI. FIELD STRENGTH/SEQUENCE: 3 T, readout‐segmented echo planar imaging (rsEPI) with IR fat suppression, dynamic contrast‐enhanced (DCE) T(1)‐weighted imaging, T(2)‐weighted turbo‐spin echo (TSE) with fatsat. ASSESSMENT: Two readers independently drew a region of interest on ADC maps on the whole tumor (WTu), and on its darkest part (DpTu). Minimum, mean, and maximum ADC values of both WTu and DpTu were compared for receptor status, proliferation rate, and molecular subtypes. STATISTICAL TESTS: Wilcoxon rank sum, Mann–Whitney U‐tests for associations between radiologic features and histopathology; histogram and q‐q plots, Shapiro–Wilk's test to assess normality, concordance correlation coefficient for precision and accuracy; receiver operating characteristics curve analysis. RESULTS: Estrogen receptor (ER) and progesterone receptor (PR) status had significantly different ADC values for both readers. Maximum WTu (P = 0.0004 and 0.0005) and mean WTu (P = 0.0101 and 0.0136) were significantly lower for ER‐positive tumors, while PR‐positive tumors had significantly lower maximum WTu values (P = 0.0089 and 0.0047). Maximum WTu ADC was the only metric that was significantly different for molecular subtypes for both readers (P = 0.0100 and 0.0132) and enabled differentiation of luminal tumors from nonluminal (P = 0.0068 and 0.0069) with an area under the curve of 0.685 for both readers. DATA CONCLUSION: Maximum WTu ADC values may be used to differentiate luminal from other molecular subtypes of breast cancer. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:836–846. John Wiley & Sons, Inc. 2019-02-27 2019-09 /pmc/articles/PMC6767396/ /pubmed/30811717 http://dx.doi.org/10.1002/jmri.26697 Text en © 2019 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Original Research
Horvat, Joao V.
Bernard‐Davila, Blanca
Helbich, Thomas H.
Zhang, Michelle
Morris, Elizabeth A.
Thakur, Sunitha B.
Ochoa‐Albiztegui, R. Elena
Leithner, Doris
Marino, Maria A.
Baltzer, Pascal A.
Clauser, Paola
Kapetas, Panagiotis
Bago‐Horvath, Zsuzsanna
Pinker, Katja
Diffusion‐weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer
title Diffusion‐weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer
title_full Diffusion‐weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer
title_fullStr Diffusion‐weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer
title_full_unstemmed Diffusion‐weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer
title_short Diffusion‐weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer
title_sort diffusion‐weighted imaging (dwi) with apparent diffusion coefficient (adc) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767396/
https://www.ncbi.nlm.nih.gov/pubmed/30811717
http://dx.doi.org/10.1002/jmri.26697
work_keys_str_mv AT horvatjoaov diffusionweightedimagingdwiwithapparentdiffusioncoefficientadcmappingasaquantitativeimagingbiomarkerforpredictionofimmunohistochemicalreceptorstatusproliferationrateandmolecularsubtypesofbreastcancer
AT bernarddavilablanca diffusionweightedimagingdwiwithapparentdiffusioncoefficientadcmappingasaquantitativeimagingbiomarkerforpredictionofimmunohistochemicalreceptorstatusproliferationrateandmolecularsubtypesofbreastcancer
AT helbichthomash diffusionweightedimagingdwiwithapparentdiffusioncoefficientadcmappingasaquantitativeimagingbiomarkerforpredictionofimmunohistochemicalreceptorstatusproliferationrateandmolecularsubtypesofbreastcancer
AT zhangmichelle diffusionweightedimagingdwiwithapparentdiffusioncoefficientadcmappingasaquantitativeimagingbiomarkerforpredictionofimmunohistochemicalreceptorstatusproliferationrateandmolecularsubtypesofbreastcancer
AT morriselizabetha diffusionweightedimagingdwiwithapparentdiffusioncoefficientadcmappingasaquantitativeimagingbiomarkerforpredictionofimmunohistochemicalreceptorstatusproliferationrateandmolecularsubtypesofbreastcancer
AT thakursunithab diffusionweightedimagingdwiwithapparentdiffusioncoefficientadcmappingasaquantitativeimagingbiomarkerforpredictionofimmunohistochemicalreceptorstatusproliferationrateandmolecularsubtypesofbreastcancer
AT ochoaalbizteguirelena diffusionweightedimagingdwiwithapparentdiffusioncoefficientadcmappingasaquantitativeimagingbiomarkerforpredictionofimmunohistochemicalreceptorstatusproliferationrateandmolecularsubtypesofbreastcancer
AT leithnerdoris diffusionweightedimagingdwiwithapparentdiffusioncoefficientadcmappingasaquantitativeimagingbiomarkerforpredictionofimmunohistochemicalreceptorstatusproliferationrateandmolecularsubtypesofbreastcancer
AT marinomariaa diffusionweightedimagingdwiwithapparentdiffusioncoefficientadcmappingasaquantitativeimagingbiomarkerforpredictionofimmunohistochemicalreceptorstatusproliferationrateandmolecularsubtypesofbreastcancer
AT baltzerpascala diffusionweightedimagingdwiwithapparentdiffusioncoefficientadcmappingasaquantitativeimagingbiomarkerforpredictionofimmunohistochemicalreceptorstatusproliferationrateandmolecularsubtypesofbreastcancer
AT clauserpaola diffusionweightedimagingdwiwithapparentdiffusioncoefficientadcmappingasaquantitativeimagingbiomarkerforpredictionofimmunohistochemicalreceptorstatusproliferationrateandmolecularsubtypesofbreastcancer
AT kapetaspanagiotis diffusionweightedimagingdwiwithapparentdiffusioncoefficientadcmappingasaquantitativeimagingbiomarkerforpredictionofimmunohistochemicalreceptorstatusproliferationrateandmolecularsubtypesofbreastcancer
AT bagohorvathzsuzsanna diffusionweightedimagingdwiwithapparentdiffusioncoefficientadcmappingasaquantitativeimagingbiomarkerforpredictionofimmunohistochemicalreceptorstatusproliferationrateandmolecularsubtypesofbreastcancer
AT pinkerkatja diffusionweightedimagingdwiwithapparentdiffusioncoefficientadcmappingasaquantitativeimagingbiomarkerforpredictionofimmunohistochemicalreceptorstatusproliferationrateandmolecularsubtypesofbreastcancer