Cargando…
Mitochondrial complex I NUBPL mutations cause combined dystonia with bilateral striatal necrosis and cerebellar atrophy
BACKGROUND AND PURPOSE: The recent advances in genetics have helped to unravel the cause of many dystonia syndromes. With the broadening spectrum of genetically defined dystonia syndromes, distinct clinico‐radiological phenotypes are a welcome handle to guide the diagnostic work‐up. METHODS: Exome s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767441/ https://www.ncbi.nlm.nih.gov/pubmed/30897263 http://dx.doi.org/10.1111/ene.13956 |
Sumario: | BACKGROUND AND PURPOSE: The recent advances in genetics have helped to unravel the cause of many dystonia syndromes. With the broadening spectrum of genetically defined dystonia syndromes, distinct clinico‐radiological phenotypes are a welcome handle to guide the diagnostic work‐up. METHODS: Exome sequencing was used to elucidate the genetic cause of a syndrome characterized by generalized dystonia, pyramidal and cerebellar involvement, with bilateral striatal necrosis (BSN) and cerebellar atrophy on magnetic resonance imaging. Homozygosity mapping and linkage analysis were used in a supportive role. Known genetic causes of BSN were excluded by use of exome data or Sanger sequencing. RESULTS: Compound heterozygous mutations were identified in the NUBPL gene in a small UK kindred. The gene lay in a region of positive linkage and segregated with disease in a family of six individuals. CONCLUSION: NUBPL mutations cause early onset, autosomal recessive generalized dystonia with cerebellar ataxia, pyramidal signs, preserved cognition and a distinct magnetic resonance imaging appearance with BSN and cerebellar atrophy. |
---|