Cargando…
Predicting Cell Populations in Single Cell Mass Cytometry Data
Mass cytometry by time‐of‐flight (CyTOF) is a valuable technology for high‐dimensional analysis at the single cell level. Identification of different cell populations is an important task during the data analysis. Many clustering tools can perform this task, which is essential to identify “new” cell...
Autores principales: | Abdelaal, Tamim, van Unen, Vincent, Höllt, Thomas, Koning, Frits, Reinders, Marcel J.T., Mahfouz, Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767556/ https://www.ncbi.nlm.nih.gov/pubmed/30861637 http://dx.doi.org/10.1002/cyto.a.23738 |
Ejemplares similares
-
CyTOFmerge: integrating mass cytometry data across multiple panels
por: Abdelaal, Tamim, et al.
Publicado: (2019) -
Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types
por: van Unen, Vincent, et al.
Publicado: (2017) -
Early-Life Compartmentalization of Immune Cells in Human Fetal Tissues Revealed by High-Dimensional Mass Cytometry
por: Li, Na, et al.
Publicado: (2019) -
scMoC: single-cell multi-omics clustering
por: Eltager, Mostafa, et al.
Publicado: (2022) -
Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine
por: Li, Na, et al.
Publicado: (2018)