Cargando…
Intelligent Identification for Rock-Mineral Microscopic Images Using Ensemble Machine Learning Algorithms
It is significant to identify rock-mineral microscopic images in geological engineering. The task of microscopic mineral image identification, which is often conducted in the lab, is tedious and time-consuming. Deep learning and convolutional neural networks (CNNs) provide a method to analyze minera...
Autores principales: | Zhang, Ye, Li, Mingchao, Han, Shuai, Ren, Qiubing, Shi, Jonathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767609/ https://www.ncbi.nlm.nih.gov/pubmed/31514321 http://dx.doi.org/10.3390/s19183914 |
Ejemplares similares
-
Stacked ensemble machine learning for porosity and absolute permeability prediction of carbonate rock plugs
por: Kalule, Ramanzani, et al.
Publicado: (2023) -
Prediction of successful aging using ensemble machine learning algorithms
por: Asghari Varzaneh, Zahra, et al.
Publicado: (2022) -
Hands-on ensemble learning with R: a beginner's guide to combining the power of machine learning algorithms using ensemble techniques
por: Tattar, Prabhanjan
Publicado: (2018) -
Biomedical Microscopic Imaging in Computational Intelligence Using Deep Learning Ensemble Convolution Learning-Based Feature Extraction and Classification
por: Venkata Satya Vivek, Tammineedi, et al.
Publicado: (2022) -
Carrying Position-Independent Ensemble Machine Learning Step-Counting Algorithm for Smartphones
por: Song, Zihan, et al.
Publicado: (2022)