Cargando…
Reinforcement Learning-Based Energy Management of Smart Home with Rooftop Solar Photovoltaic System, Energy Storage System, and Home Appliances
This paper presents a data-driven approach that leverages reinforcement learning to manage the optimal energy consumption of a smart home with a rooftop solar photovoltaic system, energy storage system, and smart home appliances. Compared to existing model-based optimization methods for home energy...
Autores principales: | Lee, Sangyoon, Choi, Dae-Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767655/ https://www.ncbi.nlm.nih.gov/pubmed/31547320 http://dx.doi.org/10.3390/s19183937 |
Ejemplares similares
-
Energy Management of Smart Home with Home Appliances, Energy Storage System and Electric Vehicle: A Hierarchical Deep Reinforcement Learning Approach
por: Lee, Sangyoon, et al.
Publicado: (2020) -
Privacy-Preserving Energy Management of a Shared Energy Storage System for Smart Buildings: A Federated Deep Reinforcement Learning Approach
por: Lee, Sangyoon, et al.
Publicado: (2021) -
Optimal Energy Scheduling Based on Jaya Algorithm for Integration of Vehicle-to-Home and Energy Storage System with Photovoltaic Generation in Smart Home
por: Wang, Min, et al.
Publicado: (2022) -
Photovoltaic rooftop's contribution to improve building-level energy resilience during COVID-19 work-from-home arrangement
por: Wang, Richard, et al.
Publicado: (2022) -
On the local warming potential of urban rooftop photovoltaic solar panels in cities
por: Khan, Ansar, et al.
Publicado: (2023)