Cargando…

Dual-Channel Spectral Domain Optical Coherence Tomography Based on a Single Spectrometer Using Compressive Sensing

Dual-channel spectral domain optical coherence tomography (SD-OCT) is one of the effective methods for improving imaging depth and imaging speed. In this paper, we design a dual-channel SD-OCT system based on a single spectrometer that can operate in two modes: (1) Increasing imaging speed and (2) e...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Luying, Sun, Liqun, Zou, Mingli, Hou, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767665/
https://www.ncbi.nlm.nih.gov/pubmed/31527515
http://dx.doi.org/10.3390/s19184006
Descripción
Sumario:Dual-channel spectral domain optical coherence tomography (SD-OCT) is one of the effective methods for improving imaging depth and imaging speed. In this paper, we design a dual-channel SD-OCT system based on a single spectrometer that can operate in two modes: (1) Increasing imaging speed and (2) expanding imaging depth. An optical path offset is preintroduced between the two channels to separate the two-channel data. However, this offset increases the requirement for the spectral resolution of the spectrometer in mode (1), so compressive sensing (CS) technology is used herein to overcome this problem. Consequently, in mode (1), when the spectral resolution of the spectrometer is the same as that used in the single-channel system, we use a dual-channel SD-OCT system combined with CS technology to double the imaging speed. In mode (2), when the spectral resolution of the spectrometer is only half of that used in a single-channel system, the imaging depth can be nearly doubled. We demonstrate the feasibility and effectiveness of the method proposed in this work by imaging a mirror, a fish fin, a fish eye, and an onion.