Cargando…
A Machine Learning Approach to Bridge-Damage Detection Using Responses Measured on a Passing Vehicle
This paper proposes a new two-stage machine learning approach for bridge damage detection using the responses measured on a passing vehicle. In the first stage, an artificial neural network (ANN) is trained using the vehicle responses measured from multiple passes (training data set) over a healthy...
Autores principales: | Malekjafarian, Abdollah, Golpayegani, Fatemeh, Moloney, Callum, Clarke, Siobhán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767673/ https://www.ncbi.nlm.nih.gov/pubmed/31546759 http://dx.doi.org/10.3390/s19184035 |
Ejemplares similares
-
A Machine-Learning-Based Approach for Railway Track Monitoring Using Acceleration Measured on an In-Service Train
por: Malekjafarian, Abdollah, et al.
Publicado: (2023) -
Structural Damage Identification of Bridges from Passing Test Vehicles
por: Yang, Yang, et al.
Publicado: (2018) -
Scour Damage Detection and Structural Health Monitoring of a Laboratory-Scaled Bridge Using a Vibration Energy Harvesting Device
por: Fitzgerald, Paul C., et al.
Publicado: (2019) -
Damage-Detection Approach for Bridges with Multi-Vehicle Loads Using Convolutional Autoencoder
por: Lee, Kanghyeok, et al.
Publicado: (2022) -
Inverse Filtering for Frequency Identification of Bridges Using Smartphones in Passing Vehicles: Fundamental Developments and Laboratory Verifications
por: Shirzad-Ghaleroudkhani, Nima, et al.
Publicado: (2020)