Cargando…
Label‐Free Identification of White Blood Cells Using Machine Learning
White blood cell (WBC) differential counting is an established clinical routine to assess patient immune system status. Fluorescent markers and a flow cytometer are required for the current state‐of‐the‐art method for determining WBC differential counts. However, this process requires several sample...
Autores principales: | Nassar, Mariam, Doan, Minh, Filby, Andrew, Wolkenhauer, Olaf, Fogg, Darin K., Piasecka, Justyna, Thornton, Catherine A., Carpenter, Anne E., Summers, Huw D., Rees, Paul, Hennig, Holger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767740/ https://www.ncbi.nlm.nih.gov/pubmed/31081599 http://dx.doi.org/10.1002/cyto.a.23794 |
Ejemplares similares
-
Label‐Free Leukemia Monitoring by Computer Vision
por: Doan, Minh, et al.
Publicado: (2020) -
Label-free cell cycle analysis for high-throughput imaging flow cytometry
por: Blasi, Thomas, et al.
Publicado: (2016) -
Diffusion Mapping of Eosinophil‐Activation State
por: Piasecka, Justyna, et al.
Publicado: (2019) -
An open-source solution for advanced imaging flow cytometry data analysis using machine learning
por: Hennig, Holger, et al.
Publicado: (2017) -
Data Driven Cell Cycle Model to Quantify the Efficacy of Cancer Therapeutics Targeting Specific Cell-Cycle Phases From Flow Cytometry Results
por: James, David W., et al.
Publicado: (2021)