Cargando…

Drug penetration enhancement techniques in ablative fractional laser assisted cutaneous delivery of indocyanine green

BACKGROUND AND OBJECTIVES: Topical drug delivery can be increased by pretreatment of the skin with ablative fractional laser (AFXL). Several physical penetration enhancement techniques have been investigated to further improve AFXL‐assisted drug delivery. This study investigated the influence of thr...

Descripción completa

Detalles Bibliográficos
Autores principales: Meesters, Arne A., Nieboer, Marilin J., Almasian, Mitra, Georgiou, Giota, de Rie, Menno A., Verdaasdonk, Rudolf M., Wolkerstorfer, Albert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767780/
https://www.ncbi.nlm.nih.gov/pubmed/30908718
http://dx.doi.org/10.1002/lsm.23088
Descripción
Sumario:BACKGROUND AND OBJECTIVES: Topical drug delivery can be increased by pretreatment of the skin with ablative fractional laser (AFXL). Several physical penetration enhancement techniques have been investigated to further improve AFXL‐assisted drug delivery. This study investigated the influence of three of these techniques, namely massage, acoustic pressure wave treatment, and pressure vacuum alterations (PVP) on the distribution of the fluorescent drug indocyanine green (ICG) at different depths in the skin after topical application on AFXL pretreated skin. MATERIALS AND METHODS: In ex vivo human skin, test regions were pretreated with AFXL (10,600 nm, channel depth 300 μm, channel width 120 μm, density 15%). Subsequently, ICG was applied, followed by massage, acoustic pressure wave treatment or PVP. ICG fluorescence intensity (FI) was assessed after 1, 3, and 24 hours at several depths using fluorescence photography. RESULTS: FI was higher when using enhancement techniques compared to control (AFXL‐only) up to 3 hours application time (P < 0.05). After 3 hours, mean surface FI was highest after acoustic pressure wave treatment (61.5 arbitrary units; AU), followed by massage (57.5AU) and PVP (46.9AU), respectively (for comparison: AFXL‐only 31.6AU, no pretreatment 14.9AU). Comparable or higher FI was achieved already after 1 hour with enhancement techniques compared to 3–24 hours application time without. After 24 hours, no significant differences between enhancement techniques and AFXL‐only were observed (P = 0.31). CONCLUSION: Penetration enhancement techniques, especially acoustic pressure wave treatment and massage, result in improved drug accumulation in AFXL‐pretreated skin and reduce the application time needed. Lasers Surg. Med. © 2019 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.