Cargando…
Biological Activity Of miRNA-27a Using Peptide-based Drug Delivery Systems
BACKGROUND: Endogenously expressed microRNAs (miRNAs) have attracted attention as important regulators in post-transcriptionally controlling gene expression of various physiological processes. As miRNA dysregulation is often associated with various disease patterns, such as obesity, miRNA-27a might...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768125/ https://www.ncbi.nlm.nih.gov/pubmed/31576124 http://dx.doi.org/10.2147/IJN.S208446 |
Sumario: | BACKGROUND: Endogenously expressed microRNAs (miRNAs) have attracted attention as important regulators in post-transcriptionally controlling gene expression of various physiological processes. As miRNA dysregulation is often associated with various disease patterns, such as obesity, miRNA-27a might therefore be a promising candidate for miRNA mimic replacement therapy by inhibiting adipogenic marker genes. However, application of naked nucleic acids faces some limitations concerning poor enzymatic stability, bio-membrane permeation and cellular uptake. To overcome these obstacles, the development of appropriate drug delivery systems (DDS) for miRNAs is of paramount importance. METHODS: In this work, a triple combination of atomic force microscopy (AFM), brightfield (BF) and fluorescence microscopy was used to trace the cellular adhesion of N-TER peptide-nucleic acid complexes followed by time-dependent uptake studies using confocal laser scanning microscopy (cLSM). To reveal the biological effect of miRNA-27a on adipocyte development after transfection treatment, Oil-Red-O (ORO)- staining was performed to estimate the degree of in lipid droplets accumulated ORO in mature adipocytes by using light microscopy images as well as absorbance measurements. RESULTS: The present findings demonstrated that amphipathic N-TER peptides represent a suitable DDS for miRNAs by promoting non-covalent complexation through electrostatic interactions between both components as well as cellular adhesion of the N-TER peptide – nucleic acid complexes followed by uptake across cell membranes and intracellular release of miRNAs. The anti-adipogenic effect of miRNA-27a in 3T3-L1 cells could be detected in mature adipocytes by reduced lipid droplet formation. CONCLUSION: The present DDS assembled from amphipathic N-TER peptides and miRNAs is capable of inducing the anti-adipogenic effect of miRNA-27a by reducing lipid droplet accumulation in mature adipocytes. With respect to miRNA mimic replacement therapies, this approach might provide new therapeutic strategies to prevent or treat obesity and obesity-related disorders. |
---|