Cargando…

Pyridyl thiosemicarbazide: synthesis, crystal structure, DFT/B3LYP, molecular docking studies and its biological investigations

N-(pyridin-2-yl)hydrazinecarbothioamide has been synthesized and characterized by single-crystal X-ray and spectroscopic techniques. Furthermore, its geometry optimization, calculated vibrational frequencies, non-linear optical properties, electrostatic potential and average local ionization energy...

Descripción completa

Detalles Bibliográficos
Autor principal: Abu-Melha, Sraa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768131/
https://www.ncbi.nlm.nih.gov/pubmed/30269227
http://dx.doi.org/10.1186/s13065-018-0469-3
Descripción
Sumario:N-(pyridin-2-yl)hydrazinecarbothioamide has been synthesized and characterized by single-crystal X-ray and spectroscopic techniques. Furthermore, its geometry optimization, calculated vibrational frequencies, non-linear optical properties, electrostatic potential and average local ionization energy properties of molecular surface were being evaluated using Jaguar program in the Schrödinger’s set on the basis of the density functional concept to pretend the molecular geometry and predict properties of molecule performed by the hybrid density functional routine B3LYP. Furthermore, the docking study of N-(pyridin-2-yl)hydrazinecarbothioamide were applied against negative Escherichia coli bacterial and gram positive Staphylococcus aureus bacterial strains by Schrödinger suite program using XP glide protocol. [Image: see text]