Cargando…
Characterization of a new composite membrane for point of need paper-based micro-scale microbial fuel cell analytical devices
Microbial fuel cells (MFCs) can evolve in a viable technology if environmentally sound materials are developed and became available at low cost for these devices. This is especially important not only for the designing of large wastewater treatment systems, but also for the fabrication of low-cost,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768485/ https://www.ncbi.nlm.nih.gov/pubmed/31568487 http://dx.doi.org/10.1371/journal.pone.0222538 |
_version_ | 1783455103104057344 |
---|---|
author | González-Pabón, María Jesús Figueredo, Federico Martínez-Casillas, Diana C. Cortón, Eduardo |
author_facet | González-Pabón, María Jesús Figueredo, Federico Martínez-Casillas, Diana C. Cortón, Eduardo |
author_sort | González-Pabón, María Jesús |
collection | PubMed |
description | Microbial fuel cells (MFCs) can evolve in a viable technology if environmentally sound materials are developed and became available at low cost for these devices. This is especially important not only for the designing of large wastewater treatment systems, but also for the fabrication of low-cost, single-use devices. In this work we synthesized membranes by a simple procedure involving easily-biodegradable and economic materials such as poly (vinyl alcohol) (PVA), chitosan (CS) and the composite PVA:CS. Membranes were chemical and physically characterized and compared to Nafion(®). Performance was studied using the membrane as separator in a typical H-Type MFCs showing that PVA:CS membrane outperform Nafion(®) 4 times (power production) while being 75 times more economic. We found that performance in MFC depends over interactions among several membrane characteristics such as oxygen permeability and ion conductivity. Moreover, we design a paper-based micro-scale MFC, which was used as a toxicity assay using 16 μL samples containing formaldehyde as a model toxicant. The PVA:CS membrane presented here can offer low environmental impact and become a very interesting option for point of need single-use analytical devices, especially in low-income countries where burning is used as disposal method, and toxic fluoride fumes (from Nafion(®)) can be released to the environment. |
format | Online Article Text |
id | pubmed-6768485 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-67684852019-10-12 Characterization of a new composite membrane for point of need paper-based micro-scale microbial fuel cell analytical devices González-Pabón, María Jesús Figueredo, Federico Martínez-Casillas, Diana C. Cortón, Eduardo PLoS One Research Article Microbial fuel cells (MFCs) can evolve in a viable technology if environmentally sound materials are developed and became available at low cost for these devices. This is especially important not only for the designing of large wastewater treatment systems, but also for the fabrication of low-cost, single-use devices. In this work we synthesized membranes by a simple procedure involving easily-biodegradable and economic materials such as poly (vinyl alcohol) (PVA), chitosan (CS) and the composite PVA:CS. Membranes were chemical and physically characterized and compared to Nafion(®). Performance was studied using the membrane as separator in a typical H-Type MFCs showing that PVA:CS membrane outperform Nafion(®) 4 times (power production) while being 75 times more economic. We found that performance in MFC depends over interactions among several membrane characteristics such as oxygen permeability and ion conductivity. Moreover, we design a paper-based micro-scale MFC, which was used as a toxicity assay using 16 μL samples containing formaldehyde as a model toxicant. The PVA:CS membrane presented here can offer low environmental impact and become a very interesting option for point of need single-use analytical devices, especially in low-income countries where burning is used as disposal method, and toxic fluoride fumes (from Nafion(®)) can be released to the environment. Public Library of Science 2019-09-30 /pmc/articles/PMC6768485/ /pubmed/31568487 http://dx.doi.org/10.1371/journal.pone.0222538 Text en © 2019 González-Pabón et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article González-Pabón, María Jesús Figueredo, Federico Martínez-Casillas, Diana C. Cortón, Eduardo Characterization of a new composite membrane for point of need paper-based micro-scale microbial fuel cell analytical devices |
title | Characterization of a new composite membrane for point of need paper-based micro-scale microbial fuel cell analytical devices |
title_full | Characterization of a new composite membrane for point of need paper-based micro-scale microbial fuel cell analytical devices |
title_fullStr | Characterization of a new composite membrane for point of need paper-based micro-scale microbial fuel cell analytical devices |
title_full_unstemmed | Characterization of a new composite membrane for point of need paper-based micro-scale microbial fuel cell analytical devices |
title_short | Characterization of a new composite membrane for point of need paper-based micro-scale microbial fuel cell analytical devices |
title_sort | characterization of a new composite membrane for point of need paper-based micro-scale microbial fuel cell analytical devices |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768485/ https://www.ncbi.nlm.nih.gov/pubmed/31568487 http://dx.doi.org/10.1371/journal.pone.0222538 |
work_keys_str_mv | AT gonzalezpabonmariajesus characterizationofanewcompositemembraneforpointofneedpaperbasedmicroscalemicrobialfuelcellanalyticaldevices AT figueredofederico characterizationofanewcompositemembraneforpointofneedpaperbasedmicroscalemicrobialfuelcellanalyticaldevices AT martinezcasillasdianac characterizationofanewcompositemembraneforpointofneedpaperbasedmicroscalemicrobialfuelcellanalyticaldevices AT cortoneduardo characterizationofanewcompositemembraneforpointofneedpaperbasedmicroscalemicrobialfuelcellanalyticaldevices |