Cargando…

Differential cell-type dependent brain state modulations of sensory representations in the non-lemniscal mouse inferior colliculus

Sensory responses of the neocortex are strongly influenced by brain state changes. However, it remains unclear whether and how the sensory responses of the midbrain are affected. Here we addressed this issue by using in vivo two-photon calcium imaging to monitor the spontaneous and sound-evoked acti...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Chenggang, Song, Sen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769006/
https://www.ncbi.nlm.nih.gov/pubmed/31583287
http://dx.doi.org/10.1038/s42003-019-0602-4
Descripción
Sumario:Sensory responses of the neocortex are strongly influenced by brain state changes. However, it remains unclear whether and how the sensory responses of the midbrain are affected. Here we addressed this issue by using in vivo two-photon calcium imaging to monitor the spontaneous and sound-evoked activities in the mouse inferior colliculus (IC). We developed a method enabling us to image the first layer of non-lemniscal IC (IC shell L1) in awake behaving mice. Compared with the awake state, spectral tuning selectivity of excitatory neurons was decreased during isoflurane anesthesia. Calcium imaging in behaving animals revealed that activities of inhibitory neurons were highly correlated with locomotion. Compared with stationary periods, spectral tuning selectivity of excitatory neurons was increased during locomotion. Taken together, our studies reveal that neuronal activities in the IC shell L1 are brain state dependent, whereas the brain state modulates the excitatory and inhibitory neurons differentially.