Cargando…
M1 muscarinic receptor is a key target of neuroprotection, neuroregeneration and memory recovery by i-Extract from Withania somnifera
Memory loss is one of the most tragic symptoms of Alzheimer’s disease. Our laboratory has recently demonstrated that ‘i-Extract’ of Ashwagandha (Withania somnifera) restores memory loss in scopolamine (SC)-induced mice. The prime target of i-Extract is obscure. We hypothesize that i-Extract may prim...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769020/ https://www.ncbi.nlm.nih.gov/pubmed/31570736 http://dx.doi.org/10.1038/s41598-019-48238-6 |
Sumario: | Memory loss is one of the most tragic symptoms of Alzheimer’s disease. Our laboratory has recently demonstrated that ‘i-Extract’ of Ashwagandha (Withania somnifera) restores memory loss in scopolamine (SC)-induced mice. The prime target of i-Extract is obscure. We hypothesize that i-Extract may primarily target muscarinic subtype acetylcholine receptors that regulate memory processes. The present study elucidates key target(s) of i-Extract via cellular, biochemical, and molecular techniques in a relevant amnesia mouse model and primary hippocampal neuronal cultures. Wild type Swiss albino mice were fed i-Extract, and hippocampal cells from naïve mice were treated with i-Extract, followed by muscarinic antagonist (dicyclomine) and agonist (pilocarpine) treatments. We measured dendritic formation and growth by immunocytochemistry, kallikrein 8 (KLK8) mRNA by reverse transcription polymerase chain reaction (RT-PCR), and levels of KLK8 and microtubule-associated protein 2, c isoform (MAP2c) proteins by western blotting. We performed muscarinic receptor radioligand binding. i-Extract stimulated an increase in dendrite growth markers, KLK8 and MAP2. Scopolamine-mediated reduction was significantly reversed by i-Extract in mouse cerebral cortex and hippocampus. Our study identified muscarinic receptor as a key target of i-Extract, providing mechanistic evidence for its clinical application in neurodegenerative cognitive disorders. |
---|