Cargando…
Detecting sequence signals in targeting peptides using deep learning
In bioinformatics, machine learning methods have been used to predict features embedded in the sequences. In contrast to what is generally assumed, machine learning approaches can also provide new insights into the underlying biology. Here, we demonstrate this by presenting TargetP 2.0, a novel stat...
Autores principales: | Almagro Armenteros, Jose Juan, Salvatore, Marco, Emanuelsson, Olof, Winther, Ole, von Heijne, Gunnar, Elofsson, Arne, Nielsen, Henrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769257/ https://www.ncbi.nlm.nih.gov/pubmed/31570514 http://dx.doi.org/10.26508/lsa.201900429 |
Ejemplares similares
-
SignalP 6.0 predicts all five types of signal peptides using protein language models
por: Teufel, Felix, et al.
Publicado: (2022) -
DeepLoc 2.0: multi-label subcellular localization prediction using protein language models
por: Thumuluri, Vineet, et al.
Publicado: (2022) -
Towards in silico CLIP-seq: predicting protein-RNA interaction via sequence-to-signal learning
por: Horlacher, Marc, et al.
Publicado: (2023) -
GraphPart: homology partitioning for biological sequence analysis
por: Teufel, Felix, et al.
Publicado: (2023) -
Molecular barcoding of native RNAs using nanopore sequencing and deep learning
por: Smith, Martin A., et al.
Publicado: (2020)