Cargando…

Cooperative Binding of KaiB to the KaiC Hexamer Ensures Accurate Circadian Clock Oscillation in Cyanobacteria

The central oscillator generating cyanobacterial circadian rhythms comprises KaiA, KaiB, and KaiC proteins. Their interactions cause KaiC phosphorylation and dephosphorylation cycles over approximately 24 h. KaiB interacts with phosphorylated KaiC in competition with SasA, an output protein harborin...

Descripción completa

Detalles Bibliográficos
Autores principales: Murakami, Reiko, Yunoki, Yasuhiro, Ishii, Kentaro, Terauchi, Kazuki, Uchiyama, Susumu, Yagi, Hirokazu, Kato, Koichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769508/
https://www.ncbi.nlm.nih.gov/pubmed/31540310
http://dx.doi.org/10.3390/ijms20184550
Descripción
Sumario:The central oscillator generating cyanobacterial circadian rhythms comprises KaiA, KaiB, and KaiC proteins. Their interactions cause KaiC phosphorylation and dephosphorylation cycles over approximately 24 h. KaiB interacts with phosphorylated KaiC in competition with SasA, an output protein harboring a KaiB-homologous domain. Structural data have identified KaiB–KaiC interaction sites; however, KaiB mutations distal from the binding surfaces can impair KaiB–KaiC interaction and the circadian rhythm. Reportedly, KaiB and KaiC exclusively form a complex in a 6:6 stoichiometry, indicating that KaiB–KaiC hexamer binding shows strong positive cooperativity. Here, mutational analysis was used to investigate the functional significance of this cooperative interaction. Results demonstrate that electrostatic complementarity between KaiB protomers promotes their cooperative assembly, which is indispensable for accurate rhythm generation. SasA does not exhibit such electrostatic complementarity and noncooperatively binds to KaiC. Thus, the findings explain KaiB distal mutation effects, providing mechanistic insights into clock protein interplay.