Cargando…
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
Genotype imputation, where missing genotypes can be computationally imputed, is an essential tool in genomic analysis ranging from genome wide associations to phenotype prediction. Traditional genotype imputation methods are typically based on haplotype-clustering algorithms, hidden Markov models (H...
Autores principales: | Chen, Junjie, Shi, Xinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769581/ https://www.ncbi.nlm.nih.gov/pubmed/31466333 http://dx.doi.org/10.3390/genes10090652 |
Ejemplares similares
-
Rapid, Reference-Free human genotype imputation with denoising autoencoders
por: Dias, Raquel, et al.
Publicado: (2022) -
Classification of Thyroid Nodules with Stacked Denoising Sparse Autoencoder
por: Li, Zexin, et al.
Publicado: (2020) -
Automated chest screening based on a hybrid model of transfer learning and convolutional sparse denoising autoencoder
por: Wang, Changmiao, et al.
Publicado: (2018) -
An autoencoder-based deep learning method for genotype imputation
por: Song, Meng, et al.
Publicado: (2022) -
Sparsity-Penalized Stacked Denoising Autoencoders for Imputing Single-Cell RNA-seq Data
por: Chi, Weilai, et al.
Publicado: (2020)