Cargando…
A Novel Computational Model for Predicting microRNA–Disease Associations Based on Heterogeneous Graph Convolutional Networks
Identifying the interactions between disease and microRNA (miRNA) can accelerate drugs development, individualized diagnosis, and treatment for various human diseases. However, experimental methods are time-consuming and costly. So computational approaches to predict latent miRNA–disease interaction...
Autores principales: | Li, Chunyan, Liu, Hongju, Hu, Qian, Que, Jinlong, Yao, Junfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769654/ https://www.ncbi.nlm.nih.gov/pubmed/31455028 http://dx.doi.org/10.3390/cells8090977 |
Ejemplares similares
-
Heterogeneous Graph Convolutional Networks and Matrix Completion for miRNA-Disease Association Prediction
por: Zhu, Rongxiang, et al.
Publicado: (2020) -
Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network
por: Cao, Ruifen, et al.
Publicado: (2022) -
CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network
por: Ma, Zhihao, et al.
Publicado: (2021) -
Predicting lncRNA-disease associations based on heterogeneous graph convolutional generative adversarial network
por: Lu, Zhonghao, et al.
Publicado: (2023) -
Computational method using heterogeneous graph convolutional network model combined with reinforcement layer for MiRNA–disease association prediction
por: Huang, Dan, et al.
Publicado: (2022)