Cargando…
The Emerging Role of l-Glutamine in Cardiovascular Health and Disease
Emerging evidence indicates that l-glutamine (Gln) plays a fundamental role in cardiovascular physiology and pathology. By serving as a substrate for the synthesis of DNA, ATP, proteins, and lipids, Gln drives critical processes in vascular cells, including proliferation, migration, apoptosis, senes...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769761/ https://www.ncbi.nlm.nih.gov/pubmed/31487814 http://dx.doi.org/10.3390/nu11092092 |
_version_ | 1783455313299505152 |
---|---|
author | Durante, William |
author_facet | Durante, William |
author_sort | Durante, William |
collection | PubMed |
description | Emerging evidence indicates that l-glutamine (Gln) plays a fundamental role in cardiovascular physiology and pathology. By serving as a substrate for the synthesis of DNA, ATP, proteins, and lipids, Gln drives critical processes in vascular cells, including proliferation, migration, apoptosis, senescence, and extracellular matrix deposition. Furthermore, Gln exerts potent antioxidant and anti-inflammatory effects in the circulation by inducing the expression of heme oxygenase-1, heat shock proteins, and glutathione. Gln also promotes cardiovascular health by serving as an l-arginine precursor to optimize nitric oxide synthesis. Importantly, Gln mitigates numerous risk factors for cardiovascular disease, such as hypertension, hyperlipidemia, glucose intolerance, obesity, and diabetes. Many studies demonstrate that Gln supplementation protects against cardiometabolic disease, ischemia-reperfusion injury, sickle cell disease, cardiac injury by inimical stimuli, and may be beneficial in patients with heart failure. However, excessive shunting of Gln to the Krebs cycle can precipitate aberrant angiogenic responses and the development of pulmonary arterial hypertension. In these instances, therapeutic targeting of the enzymes involved in glutaminolysis such as glutaminase-1, Gln synthetase, glutamate dehydrogenase, and amino acid transaminase has shown promise in preclinical models. Future translation studies employing Gln delivery approaches and/or glutaminolysis inhibitors will determine the success of targeting Gln in cardiovascular disease. |
format | Online Article Text |
id | pubmed-6769761 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67697612019-10-30 The Emerging Role of l-Glutamine in Cardiovascular Health and Disease Durante, William Nutrients Review Emerging evidence indicates that l-glutamine (Gln) plays a fundamental role in cardiovascular physiology and pathology. By serving as a substrate for the synthesis of DNA, ATP, proteins, and lipids, Gln drives critical processes in vascular cells, including proliferation, migration, apoptosis, senescence, and extracellular matrix deposition. Furthermore, Gln exerts potent antioxidant and anti-inflammatory effects in the circulation by inducing the expression of heme oxygenase-1, heat shock proteins, and glutathione. Gln also promotes cardiovascular health by serving as an l-arginine precursor to optimize nitric oxide synthesis. Importantly, Gln mitigates numerous risk factors for cardiovascular disease, such as hypertension, hyperlipidemia, glucose intolerance, obesity, and diabetes. Many studies demonstrate that Gln supplementation protects against cardiometabolic disease, ischemia-reperfusion injury, sickle cell disease, cardiac injury by inimical stimuli, and may be beneficial in patients with heart failure. However, excessive shunting of Gln to the Krebs cycle can precipitate aberrant angiogenic responses and the development of pulmonary arterial hypertension. In these instances, therapeutic targeting of the enzymes involved in glutaminolysis such as glutaminase-1, Gln synthetase, glutamate dehydrogenase, and amino acid transaminase has shown promise in preclinical models. Future translation studies employing Gln delivery approaches and/or glutaminolysis inhibitors will determine the success of targeting Gln in cardiovascular disease. MDPI 2019-09-04 /pmc/articles/PMC6769761/ /pubmed/31487814 http://dx.doi.org/10.3390/nu11092092 Text en © 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Durante, William The Emerging Role of l-Glutamine in Cardiovascular Health and Disease |
title | The Emerging Role of l-Glutamine in Cardiovascular Health and Disease |
title_full | The Emerging Role of l-Glutamine in Cardiovascular Health and Disease |
title_fullStr | The Emerging Role of l-Glutamine in Cardiovascular Health and Disease |
title_full_unstemmed | The Emerging Role of l-Glutamine in Cardiovascular Health and Disease |
title_short | The Emerging Role of l-Glutamine in Cardiovascular Health and Disease |
title_sort | emerging role of l-glutamine in cardiovascular health and disease |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769761/ https://www.ncbi.nlm.nih.gov/pubmed/31487814 http://dx.doi.org/10.3390/nu11092092 |
work_keys_str_mv | AT durantewilliam theemergingroleoflglutamineincardiovascularhealthanddisease AT durantewilliam emergingroleoflglutamineincardiovascularhealthanddisease |