Cargando…
Wnt10b Participates in Regulating Fatty Acid Synthesis in the Muscle of Zebrafish
There are 19 Wnt genes in mammals that belong to 12 subfamilies. Wnt signaling pathways participate in regulating numerous homeostatic and developmental processes in animals. However, the function of Wnt10b in fatty acid synthesis remains unclear in fish species. In the present study, we uncovered t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769891/ https://www.ncbi.nlm.nih.gov/pubmed/31480347 http://dx.doi.org/10.3390/cells8091011 |
_version_ | 1783455343091646464 |
---|---|
author | Liu, Dongwu Pang, Qiuxiang Han, Qiang Shi, Qilong Zhang, Qin Yu, Hairui |
author_facet | Liu, Dongwu Pang, Qiuxiang Han, Qiang Shi, Qilong Zhang, Qin Yu, Hairui |
author_sort | Liu, Dongwu |
collection | PubMed |
description | There are 19 Wnt genes in mammals that belong to 12 subfamilies. Wnt signaling pathways participate in regulating numerous homeostatic and developmental processes in animals. However, the function of Wnt10b in fatty acid synthesis remains unclear in fish species. In the present study, we uncovered the role of the Wnt10b signaling pathway in the regulation of fatty acid synthesis in the muscle of zebrafish. The gene of Wnt10b was overexpressed in the muscle of zebrafish using pEGFP-N1-Wnt10b vector injection, which significantly decreased the expression of glycogen synthase kinase 3β (GSK-3β), but increased the expression of β-catenin, peroxisome proliferators-activated receptor γ (PPARγ), and CCAAT/enhancer binding protein α (C/EBPα). Moreover, the activity and mRNA expression of key lipogenic enzymes ATP-citrate lyase (ACL), acetyl-CoA carboxylase (ACC) and fatty acid synthetase (FAS), and the content of non-esterified fatty acids (NEFA), total cholesterol (TC), and triglyceride (TG) were also significantly decreased. Furthermore, interference of the Wnt10b gene significantly inhibited the expression of β-catenin, PPARγ, and C/EBPα, but significantly induced the expression of GSK-3β, FAS, ACC, and ACL. The content of NEFA, TC, and TG as well as the activity of FAS, ACC, and ACL significantly increased. Thus, our results showed that Wnt10b participates in regulating fatty acid synthesis via β-catenin, C/EBPα and PPARγ in the muscle of zebrafish. |
format | Online Article Text |
id | pubmed-6769891 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67698912019-10-30 Wnt10b Participates in Regulating Fatty Acid Synthesis in the Muscle of Zebrafish Liu, Dongwu Pang, Qiuxiang Han, Qiang Shi, Qilong Zhang, Qin Yu, Hairui Cells Article There are 19 Wnt genes in mammals that belong to 12 subfamilies. Wnt signaling pathways participate in regulating numerous homeostatic and developmental processes in animals. However, the function of Wnt10b in fatty acid synthesis remains unclear in fish species. In the present study, we uncovered the role of the Wnt10b signaling pathway in the regulation of fatty acid synthesis in the muscle of zebrafish. The gene of Wnt10b was overexpressed in the muscle of zebrafish using pEGFP-N1-Wnt10b vector injection, which significantly decreased the expression of glycogen synthase kinase 3β (GSK-3β), but increased the expression of β-catenin, peroxisome proliferators-activated receptor γ (PPARγ), and CCAAT/enhancer binding protein α (C/EBPα). Moreover, the activity and mRNA expression of key lipogenic enzymes ATP-citrate lyase (ACL), acetyl-CoA carboxylase (ACC) and fatty acid synthetase (FAS), and the content of non-esterified fatty acids (NEFA), total cholesterol (TC), and triglyceride (TG) were also significantly decreased. Furthermore, interference of the Wnt10b gene significantly inhibited the expression of β-catenin, PPARγ, and C/EBPα, but significantly induced the expression of GSK-3β, FAS, ACC, and ACL. The content of NEFA, TC, and TG as well as the activity of FAS, ACC, and ACL significantly increased. Thus, our results showed that Wnt10b participates in regulating fatty acid synthesis via β-catenin, C/EBPα and PPARγ in the muscle of zebrafish. MDPI 2019-08-30 /pmc/articles/PMC6769891/ /pubmed/31480347 http://dx.doi.org/10.3390/cells8091011 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Dongwu Pang, Qiuxiang Han, Qiang Shi, Qilong Zhang, Qin Yu, Hairui Wnt10b Participates in Regulating Fatty Acid Synthesis in the Muscle of Zebrafish |
title | Wnt10b Participates in Regulating Fatty Acid Synthesis in the Muscle of Zebrafish |
title_full | Wnt10b Participates in Regulating Fatty Acid Synthesis in the Muscle of Zebrafish |
title_fullStr | Wnt10b Participates in Regulating Fatty Acid Synthesis in the Muscle of Zebrafish |
title_full_unstemmed | Wnt10b Participates in Regulating Fatty Acid Synthesis in the Muscle of Zebrafish |
title_short | Wnt10b Participates in Regulating Fatty Acid Synthesis in the Muscle of Zebrafish |
title_sort | wnt10b participates in regulating fatty acid synthesis in the muscle of zebrafish |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769891/ https://www.ncbi.nlm.nih.gov/pubmed/31480347 http://dx.doi.org/10.3390/cells8091011 |
work_keys_str_mv | AT liudongwu wnt10bparticipatesinregulatingfattyacidsynthesisinthemuscleofzebrafish AT pangqiuxiang wnt10bparticipatesinregulatingfattyacidsynthesisinthemuscleofzebrafish AT hanqiang wnt10bparticipatesinregulatingfattyacidsynthesisinthemuscleofzebrafish AT shiqilong wnt10bparticipatesinregulatingfattyacidsynthesisinthemuscleofzebrafish AT zhangqin wnt10bparticipatesinregulatingfattyacidsynthesisinthemuscleofzebrafish AT yuhairui wnt10bparticipatesinregulatingfattyacidsynthesisinthemuscleofzebrafish |