Cargando…
Reappraisal of Human HOG and MO3.13 Cell Lines as a Model to Study Oligodendrocyte Functioning
Myelination of neuronal axons is essential for proper brain functioning and requires mature myelinating oligodendrocytes (myOLs). The human OL cell lines HOG and MO3.13 have been widely used as in vitro models to study OL (dys) functioning. Here we applied a number of protocols aimed at differentiat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769895/ https://www.ncbi.nlm.nih.gov/pubmed/31533280 http://dx.doi.org/10.3390/cells8091096 |
_version_ | 1783455344083599360 |
---|---|
author | De Kleijn, Kim M. A. Zuure, Wieteke A. Peijnenborg, Jolien Heuvelmans, Josje M. Martens, Gerard J. M. |
author_facet | De Kleijn, Kim M. A. Zuure, Wieteke A. Peijnenborg, Jolien Heuvelmans, Josje M. Martens, Gerard J. M. |
author_sort | De Kleijn, Kim M. A. |
collection | PubMed |
description | Myelination of neuronal axons is essential for proper brain functioning and requires mature myelinating oligodendrocytes (myOLs). The human OL cell lines HOG and MO3.13 have been widely used as in vitro models to study OL (dys) functioning. Here we applied a number of protocols aimed at differentiating HOG and MO3.13 cells into myOLs. However, none of the differentiation protocols led to increased expression of terminal OL differentiation or myelin-sheath formation markers. Surprisingly, the applied protocols did cause changes in the expression of markers for early OLs, neurons, astrocytes and Schwann cells. Furthermore, we noticed that mRNA expression levels in HOG and MO3.13 cells may be affected by the density of the cultured cells. Finally, HOG and MO3.13 co-cultured with human neuronal SH-SY5Y cells did not show myelin formation under several pro-OL-differentiation and pro-myelinating conditions. Together, our results illustrate the difficulty of inducing maturation of HOG and MO3.13 cells into myOLs, implying that these oligodendrocytic cell lines may not represent an appropriate model to study the (dys)functioning of human (my)OLs and OL-linked disease mechanisms. |
format | Online Article Text |
id | pubmed-6769895 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67698952019-10-30 Reappraisal of Human HOG and MO3.13 Cell Lines as a Model to Study Oligodendrocyte Functioning De Kleijn, Kim M. A. Zuure, Wieteke A. Peijnenborg, Jolien Heuvelmans, Josje M. Martens, Gerard J. M. Cells Article Myelination of neuronal axons is essential for proper brain functioning and requires mature myelinating oligodendrocytes (myOLs). The human OL cell lines HOG and MO3.13 have been widely used as in vitro models to study OL (dys) functioning. Here we applied a number of protocols aimed at differentiating HOG and MO3.13 cells into myOLs. However, none of the differentiation protocols led to increased expression of terminal OL differentiation or myelin-sheath formation markers. Surprisingly, the applied protocols did cause changes in the expression of markers for early OLs, neurons, astrocytes and Schwann cells. Furthermore, we noticed that mRNA expression levels in HOG and MO3.13 cells may be affected by the density of the cultured cells. Finally, HOG and MO3.13 co-cultured with human neuronal SH-SY5Y cells did not show myelin formation under several pro-OL-differentiation and pro-myelinating conditions. Together, our results illustrate the difficulty of inducing maturation of HOG and MO3.13 cells into myOLs, implying that these oligodendrocytic cell lines may not represent an appropriate model to study the (dys)functioning of human (my)OLs and OL-linked disease mechanisms. MDPI 2019-09-17 /pmc/articles/PMC6769895/ /pubmed/31533280 http://dx.doi.org/10.3390/cells8091096 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article De Kleijn, Kim M. A. Zuure, Wieteke A. Peijnenborg, Jolien Heuvelmans, Josje M. Martens, Gerard J. M. Reappraisal of Human HOG and MO3.13 Cell Lines as a Model to Study Oligodendrocyte Functioning |
title | Reappraisal of Human HOG and MO3.13 Cell Lines as a Model to Study Oligodendrocyte Functioning |
title_full | Reappraisal of Human HOG and MO3.13 Cell Lines as a Model to Study Oligodendrocyte Functioning |
title_fullStr | Reappraisal of Human HOG and MO3.13 Cell Lines as a Model to Study Oligodendrocyte Functioning |
title_full_unstemmed | Reappraisal of Human HOG and MO3.13 Cell Lines as a Model to Study Oligodendrocyte Functioning |
title_short | Reappraisal of Human HOG and MO3.13 Cell Lines as a Model to Study Oligodendrocyte Functioning |
title_sort | reappraisal of human hog and mo3.13 cell lines as a model to study oligodendrocyte functioning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769895/ https://www.ncbi.nlm.nih.gov/pubmed/31533280 http://dx.doi.org/10.3390/cells8091096 |
work_keys_str_mv | AT dekleijnkimma reappraisalofhumanhogandmo313celllinesasamodeltostudyoligodendrocytefunctioning AT zuurewietekea reappraisalofhumanhogandmo313celllinesasamodeltostudyoligodendrocytefunctioning AT peijnenborgjolien reappraisalofhumanhogandmo313celllinesasamodeltostudyoligodendrocytefunctioning AT heuvelmansjosjem reappraisalofhumanhogandmo313celllinesasamodeltostudyoligodendrocytefunctioning AT martensgerardjm reappraisalofhumanhogandmo313celllinesasamodeltostudyoligodendrocytefunctioning |