Cargando…
Phenotypic Plasticity of Fibroblasts during Mammary Carcinoma Development
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment contribute to all stages of tumorigenesis and are usually considered to be tumor-promoting cells. CAFs show a remarkable degree of heterogeneity, which is attributed to developmental origin or to local environmental niches, resulting...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769951/ https://www.ncbi.nlm.nih.gov/pubmed/31505876 http://dx.doi.org/10.3390/ijms20184438 |
_version_ | 1783455357363814400 |
---|---|
author | Elwakeel, Eiman Brüggemann, Mirko Fink, Annika F. Schulz, Marcel H. Schmid, Tobias Savai, Rajkumar Brüne, Bernhard Zarnack, Kathi Weigert, Andreas |
author_facet | Elwakeel, Eiman Brüggemann, Mirko Fink, Annika F. Schulz, Marcel H. Schmid, Tobias Savai, Rajkumar Brüne, Bernhard Zarnack, Kathi Weigert, Andreas |
author_sort | Elwakeel, Eiman |
collection | PubMed |
description | Cancer-associated fibroblasts (CAFs) in the tumor microenvironment contribute to all stages of tumorigenesis and are usually considered to be tumor-promoting cells. CAFs show a remarkable degree of heterogeneity, which is attributed to developmental origin or to local environmental niches, resulting in distinct CAF subsets within individual tumors. While CAF heterogeneity is frequently investigated in late-stage tumors, data on longitudinal CAF development in tumors are lacking. To this end, we used the transgenic polyoma middle T oncogene-induced mouse mammary carcinoma model and performed whole transcriptome analysis in FACS-sorted fibroblasts from early- and late-stage tumors. We observed a shift in fibroblast populations over time towards a subset previously shown to negatively correlate with patient survival, which was confirmed by multispectral immunofluorescence analysis. Moreover, we identified a transcriptomic signature distinguishing CAFs from early- and late-stage tumors. Importantly, the signature of early-stage CAFs correlated well with tumor stage and survival in human mammary carcinoma patients. A random forest analysis suggested predictive value of the complete set of differentially expressed genes between early- and late-stage CAFs on bulk tumor patient samples, supporting the clinical relevance of our findings. In conclusion, our data show transcriptome alterations in CAFs during tumorigenesis in the mammary gland, which suggest that CAFs are educated by the tumor over time to promote tumor development. Moreover, we show that murine CAF gene signatures can harbor predictive value for human cancer. |
format | Online Article Text |
id | pubmed-6769951 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67699512019-10-30 Phenotypic Plasticity of Fibroblasts during Mammary Carcinoma Development Elwakeel, Eiman Brüggemann, Mirko Fink, Annika F. Schulz, Marcel H. Schmid, Tobias Savai, Rajkumar Brüne, Bernhard Zarnack, Kathi Weigert, Andreas Int J Mol Sci Article Cancer-associated fibroblasts (CAFs) in the tumor microenvironment contribute to all stages of tumorigenesis and are usually considered to be tumor-promoting cells. CAFs show a remarkable degree of heterogeneity, which is attributed to developmental origin or to local environmental niches, resulting in distinct CAF subsets within individual tumors. While CAF heterogeneity is frequently investigated in late-stage tumors, data on longitudinal CAF development in tumors are lacking. To this end, we used the transgenic polyoma middle T oncogene-induced mouse mammary carcinoma model and performed whole transcriptome analysis in FACS-sorted fibroblasts from early- and late-stage tumors. We observed a shift in fibroblast populations over time towards a subset previously shown to negatively correlate with patient survival, which was confirmed by multispectral immunofluorescence analysis. Moreover, we identified a transcriptomic signature distinguishing CAFs from early- and late-stage tumors. Importantly, the signature of early-stage CAFs correlated well with tumor stage and survival in human mammary carcinoma patients. A random forest analysis suggested predictive value of the complete set of differentially expressed genes between early- and late-stage CAFs on bulk tumor patient samples, supporting the clinical relevance of our findings. In conclusion, our data show transcriptome alterations in CAFs during tumorigenesis in the mammary gland, which suggest that CAFs are educated by the tumor over time to promote tumor development. Moreover, we show that murine CAF gene signatures can harbor predictive value for human cancer. MDPI 2019-09-09 /pmc/articles/PMC6769951/ /pubmed/31505876 http://dx.doi.org/10.3390/ijms20184438 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Elwakeel, Eiman Brüggemann, Mirko Fink, Annika F. Schulz, Marcel H. Schmid, Tobias Savai, Rajkumar Brüne, Bernhard Zarnack, Kathi Weigert, Andreas Phenotypic Plasticity of Fibroblasts during Mammary Carcinoma Development |
title | Phenotypic Plasticity of Fibroblasts during Mammary Carcinoma Development |
title_full | Phenotypic Plasticity of Fibroblasts during Mammary Carcinoma Development |
title_fullStr | Phenotypic Plasticity of Fibroblasts during Mammary Carcinoma Development |
title_full_unstemmed | Phenotypic Plasticity of Fibroblasts during Mammary Carcinoma Development |
title_short | Phenotypic Plasticity of Fibroblasts during Mammary Carcinoma Development |
title_sort | phenotypic plasticity of fibroblasts during mammary carcinoma development |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769951/ https://www.ncbi.nlm.nih.gov/pubmed/31505876 http://dx.doi.org/10.3390/ijms20184438 |
work_keys_str_mv | AT elwakeeleiman phenotypicplasticityoffibroblastsduringmammarycarcinomadevelopment AT bruggemannmirko phenotypicplasticityoffibroblastsduringmammarycarcinomadevelopment AT finkannikaf phenotypicplasticityoffibroblastsduringmammarycarcinomadevelopment AT schulzmarcelh phenotypicplasticityoffibroblastsduringmammarycarcinomadevelopment AT schmidtobias phenotypicplasticityoffibroblastsduringmammarycarcinomadevelopment AT savairajkumar phenotypicplasticityoffibroblastsduringmammarycarcinomadevelopment AT brunebernhard phenotypicplasticityoffibroblastsduringmammarycarcinomadevelopment AT zarnackkathi phenotypicplasticityoffibroblastsduringmammarycarcinomadevelopment AT weigertandreas phenotypicplasticityoffibroblastsduringmammarycarcinomadevelopment |