Cargando…
Conflicting Roles of 20-HETE in Hypertension and Stroke
Hypertension is the most common modifiable risk factor for stroke, and understanding the underlying mechanisms of hypertension and hypertension-related stroke is crucial. 20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid (20-HETE), which plays an important role in vasoconstriction, autoregulation, endot...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770042/ https://www.ncbi.nlm.nih.gov/pubmed/31514409 http://dx.doi.org/10.3390/ijms20184500 |
Sumario: | Hypertension is the most common modifiable risk factor for stroke, and understanding the underlying mechanisms of hypertension and hypertension-related stroke is crucial. 20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid (20-HETE), which plays an important role in vasoconstriction, autoregulation, endothelial dysfunction, angiogenesis, inflammation, and blood-brain barrier integrity, has been linked to hypertension and stroke. 20-HETE can promote hypertension by potentiating the vascular response to vasoconstrictors; it also can reduce blood pressure by inhibition of sodium transport in the kidney. The production of 20-HETE is elevated after the onset of both ischemic and hemorrhagic strokes; on the other hand, subjects with genetic variants in CYP4F2 and CYP4A11 that reduce 20-HETE production are more susceptible to stroke. This review summarizes recent genetic variants in CYP4F2, and CYP4A11 influencing 20-HETE production and discusses the role of 20-HETE in hypertension and the susceptibility to the onset, progression, and prognosis of ischemic and hemorrhagic strokes. |
---|