Cargando…
Utilizing the Combination of Binding Kinetics and Micro-Pharmacokinetics Link in Vitro α-Glucosidase Inhibition to in Vivo Target Occupancy
Many compounds with good inhibitory activity (i.e., high affinity) within in vitro experiments failed in vivo studies due to a lack of efficacy from limited target occupancy (TO) in the drug discovery process. Recently, it was found that rate constants of the formation and dissociation of the binary...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770063/ https://www.ncbi.nlm.nih.gov/pubmed/31527517 http://dx.doi.org/10.3390/biom9090493 |
_version_ | 1783455383660003328 |
---|---|
author | Wang, Guopeng Ji, Yanhua Li, Xueyan Wang, Qian Gong, Hang Wang, Baoshun Liu, Yang Pan, Yanli |
author_facet | Wang, Guopeng Ji, Yanhua Li, Xueyan Wang, Qian Gong, Hang Wang, Baoshun Liu, Yang Pan, Yanli |
author_sort | Wang, Guopeng |
collection | PubMed |
description | Many compounds with good inhibitory activity (i.e., high affinity) within in vitro experiments failed in vivo studies due to a lack of efficacy from limited target occupancy (TO) in the drug discovery process. Recently, it was found that rate constants of the formation and dissociation of the binary drug-target complex, rather than affinity, often govern in vivo efficacy. Therefore, the binding kinetics (BK) properties of compound-target interaction are emerging as a pivotal parameter. However, it is obvious that BK rate constants of the compound against target would not be directly linked to the in vivo TO unless the compound concentration in the target vicinity at any time point (TPK) can be evaluated. Here, we developed a novel simulation model to quantitate the dynamic change of target engagement over time in rat with a combined use of BK and TPK features of Epicatechin gallate (ECG) and epigallocatechin gallate (EGCG) on the basis of α-glucosidase (AGH). Analysis of the results displayed that the percent of maximum AGH occupancies by the ECG were varied significantly from 48.9 to 95.3% and by the EGCG slightly from 96 to 99.8%; that the time course of above 70% engagement by ECG spanned a range from 0 to 0.64 h and by EGCG a range of 1.5 to 8.9 h in four different intestinal segments of the rat. It was clearly analyzed how each parameter in the simulation model effected on the in vivo the AGH engagement by ECG and EGCG. Our results provide a novel approach for assessing the potential inhibitory activity of the compounds against AGH. |
format | Online Article Text |
id | pubmed-6770063 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67700632019-10-30 Utilizing the Combination of Binding Kinetics and Micro-Pharmacokinetics Link in Vitro α-Glucosidase Inhibition to in Vivo Target Occupancy Wang, Guopeng Ji, Yanhua Li, Xueyan Wang, Qian Gong, Hang Wang, Baoshun Liu, Yang Pan, Yanli Biomolecules Article Many compounds with good inhibitory activity (i.e., high affinity) within in vitro experiments failed in vivo studies due to a lack of efficacy from limited target occupancy (TO) in the drug discovery process. Recently, it was found that rate constants of the formation and dissociation of the binary drug-target complex, rather than affinity, often govern in vivo efficacy. Therefore, the binding kinetics (BK) properties of compound-target interaction are emerging as a pivotal parameter. However, it is obvious that BK rate constants of the compound against target would not be directly linked to the in vivo TO unless the compound concentration in the target vicinity at any time point (TPK) can be evaluated. Here, we developed a novel simulation model to quantitate the dynamic change of target engagement over time in rat with a combined use of BK and TPK features of Epicatechin gallate (ECG) and epigallocatechin gallate (EGCG) on the basis of α-glucosidase (AGH). Analysis of the results displayed that the percent of maximum AGH occupancies by the ECG were varied significantly from 48.9 to 95.3% and by the EGCG slightly from 96 to 99.8%; that the time course of above 70% engagement by ECG spanned a range from 0 to 0.64 h and by EGCG a range of 1.5 to 8.9 h in four different intestinal segments of the rat. It was clearly analyzed how each parameter in the simulation model effected on the in vivo the AGH engagement by ECG and EGCG. Our results provide a novel approach for assessing the potential inhibitory activity of the compounds against AGH. MDPI 2019-09-16 /pmc/articles/PMC6770063/ /pubmed/31527517 http://dx.doi.org/10.3390/biom9090493 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Guopeng Ji, Yanhua Li, Xueyan Wang, Qian Gong, Hang Wang, Baoshun Liu, Yang Pan, Yanli Utilizing the Combination of Binding Kinetics and Micro-Pharmacokinetics Link in Vitro α-Glucosidase Inhibition to in Vivo Target Occupancy |
title | Utilizing the Combination of Binding Kinetics and Micro-Pharmacokinetics Link in Vitro α-Glucosidase Inhibition to in Vivo Target Occupancy |
title_full | Utilizing the Combination of Binding Kinetics and Micro-Pharmacokinetics Link in Vitro α-Glucosidase Inhibition to in Vivo Target Occupancy |
title_fullStr | Utilizing the Combination of Binding Kinetics and Micro-Pharmacokinetics Link in Vitro α-Glucosidase Inhibition to in Vivo Target Occupancy |
title_full_unstemmed | Utilizing the Combination of Binding Kinetics and Micro-Pharmacokinetics Link in Vitro α-Glucosidase Inhibition to in Vivo Target Occupancy |
title_short | Utilizing the Combination of Binding Kinetics and Micro-Pharmacokinetics Link in Vitro α-Glucosidase Inhibition to in Vivo Target Occupancy |
title_sort | utilizing the combination of binding kinetics and micro-pharmacokinetics link in vitro α-glucosidase inhibition to in vivo target occupancy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770063/ https://www.ncbi.nlm.nih.gov/pubmed/31527517 http://dx.doi.org/10.3390/biom9090493 |
work_keys_str_mv | AT wangguopeng utilizingthecombinationofbindingkineticsandmicropharmacokineticslinkinvitroaglucosidaseinhibitiontoinvivotargetoccupancy AT jiyanhua utilizingthecombinationofbindingkineticsandmicropharmacokineticslinkinvitroaglucosidaseinhibitiontoinvivotargetoccupancy AT lixueyan utilizingthecombinationofbindingkineticsandmicropharmacokineticslinkinvitroaglucosidaseinhibitiontoinvivotargetoccupancy AT wangqian utilizingthecombinationofbindingkineticsandmicropharmacokineticslinkinvitroaglucosidaseinhibitiontoinvivotargetoccupancy AT gonghang utilizingthecombinationofbindingkineticsandmicropharmacokineticslinkinvitroaglucosidaseinhibitiontoinvivotargetoccupancy AT wangbaoshun utilizingthecombinationofbindingkineticsandmicropharmacokineticslinkinvitroaglucosidaseinhibitiontoinvivotargetoccupancy AT liuyang utilizingthecombinationofbindingkineticsandmicropharmacokineticslinkinvitroaglucosidaseinhibitiontoinvivotargetoccupancy AT panyanli utilizingthecombinationofbindingkineticsandmicropharmacokineticslinkinvitroaglucosidaseinhibitiontoinvivotargetoccupancy |