Cargando…
Prediction of Potential miRNA–Disease Associations Through a Novel Unsupervised Deep Learning Framework with Variational Autoencoder
The important role of microRNAs (miRNAs) in the formation, development, diagnosis, and treatment of diseases has attracted much attention among researchers recently. In this study, we present an unsupervised deep learning model of the variational autoencoder for MiRNA–disease association prediction...
Autores principales: | Zhang, Li, Chen, Xing, Yin, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770222/ https://www.ncbi.nlm.nih.gov/pubmed/31489920 http://dx.doi.org/10.3390/cells8091040 |
Ejemplares similares
-
Unsupervised Deep Learning based Variational Autoencoder Model for COVID-19 Diagnosis and Classification
por: Mansour, Romany F., et al.
Publicado: (2021) -
AutoDTI++: deep unsupervised learning for DTI prediction by autoencoders
por: Sajadi, Seyedeh Zahra, et al.
Publicado: (2021) -
Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder
por: Jang, Jong-Hwan, et al.
Publicado: (2021) -
Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission
por: Chen, Yitong, et al.
Publicado: (2023) -
Investigating Beta-Variational Convolutional Autoencoders for the Unsupervised Classification of Chest Pneumonia
por: Akila, Serag Mohamed, et al.
Publicado: (2023)