Cargando…

Natural Variation and Domestication Selection of ZmPGP1 Affects Plant Architecture and Yield-Related Traits in Maize

ZmPGP1, involved in the polar auxin transport, has been shown to be associated with plant height, leaf angle, yield traits, and root development in maize. To explore natural variation and domestication selection of ZmPGP1, we re-sequenced the ZmPGP1 gene in 349 inbred lines, 68 landraces, and 32 teo...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Pengcheng, Wei, Jie, Wang, Houmiao, Fang, Yuan, Yin, Shuangyi, Xu, Yang, Liu, Jun, Yang, Zefeng, Xu, Chenwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770335/
https://www.ncbi.nlm.nih.gov/pubmed/31480272
http://dx.doi.org/10.3390/genes10090664
Descripción
Sumario:ZmPGP1, involved in the polar auxin transport, has been shown to be associated with plant height, leaf angle, yield traits, and root development in maize. To explore natural variation and domestication selection of ZmPGP1, we re-sequenced the ZmPGP1 gene in 349 inbred lines, 68 landraces, and 32 teosintes. Sequence polymorphisms, nucleotide diversity, and neutral tests revealed that ZmPGP1 might be selected during domestication and improvement processes. Marker–trait association analysis in inbred lines identified 11 variants significantly associated with 4 plant architecture and 5 ear traits. SNP1473 was the most significant variant for kernel length and ear grain weight. The frequency of an increased allele T was 40.6% in teosintes, and it was enriched to 60.3% and 89.1% during maize domestication and improvement. This result revealed that ZmPGP1 may be selected in the domestication and improvement process, and significant variants could be used to develop functional markers to improve plant architecture and ear traits in maize.