Cargando…

The Endocannabinoid System of Animals

SIMPLE SUMMARY: Our understanding of the Endocannabinoid System of animals, and its ubiquitous presence in nearly all members of Animalia, has opened the door to novel approaches targeting pain management, cancer therapeutics, modulation of neurologic disorders, stress reduction, anxiety management,...

Descripción completa

Detalles Bibliográficos
Autor principal: Silver, Robert J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770351/
https://www.ncbi.nlm.nih.gov/pubmed/31527410
http://dx.doi.org/10.3390/ani9090686
Descripción
Sumario:SIMPLE SUMMARY: Our understanding of the Endocannabinoid System of animals, and its ubiquitous presence in nearly all members of Animalia, has opened the door to novel approaches targeting pain management, cancer therapeutics, modulation of neurologic disorders, stress reduction, anxiety management, and inflammatory diseases. Both endogenous and exogenous endocannabinoid-related molecules are able to function as direct ligands or, otherwise, influence the EndoCannabinoid System (ECS). This review article introduces the reader to the ECS in animals, and documents its potential as a source for emerging therapeutics. ABSTRACT: The endocannabinoid system has been found to be pervasive in mammalian species. It has also been described in invertebrate species as primitive as the Hydra. Insects, apparently, are devoid of this, otherwise, ubiquitous system that provides homeostatic balance to the nervous and immune systems, as well as many other organ systems. The endocannabinoid system (ECS) has been defined to consist of three parts, which include (1) endogenous ligands, (2) G-protein coupled receptors (GPCRs), and (3) enzymes to degrade and recycle the ligands. Two endogenous molecules have been identified as ligands in the ECS to date. The endocannabinoids are anandamide (arachidonoyl ethanolamide) and 2-AG (2-arachidonoyl glycerol). Two G-coupled protein receptors (GPCR) have been described as part of this system, with other putative GPC being considered. Coincidentally, the phytochemicals produced in large quantities by the Cannabis sativa L plant, and in lesser amounts by other plants, can interact with this system as ligands. These plant-based cannabinoids are termed phytocannabinoids. The precise determination of the distribution of cannabinoid receptors in animal species is an ongoing project, with the canine cannabinoid receptor distribution currently receiving the most interest in non-human animals.