Cargando…
A Pathway-Based Kernel Boosting Method for Sample Classification Using Genomic Data
The analysis of cancer genomic data has long suffered “the curse of dimensionality.” Sample sizes for most cancer genomic studies are a few hundreds at most while there are tens of thousands of genomic features studied. Various methods have been proposed to leverage prior biological knowledge, such...
Autores principales: | Zeng, Li, Yu, Zhaolong, Zhao, Hongyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770716/ https://www.ncbi.nlm.nih.gov/pubmed/31480483 http://dx.doi.org/10.3390/genes10090670 |
Ejemplares similares
-
Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies
por: Friedrichs, Stefanie, et al.
Publicado: (2017) -
A Kernel-Based Multivariate Feature Selection Method for Microarray Data Classification
por: Sun, Shiquan, et al.
Publicado: (2014) -
Local Coding Based Matching Kernel Method for Image Classification
por: Song, Yan, et al.
Publicado: (2014) -
Kernel Based Nonlinear Dimensionality Reduction and Classification for Genomic Microarray
por: Li, Xuehua, et al.
Publicado: (2008) -
Kernel-based distance metric learning for microarray data classification
por: Xiong, Huilin, et al.
Publicado: (2006)