Cargando…
YaeB, Expressed in Response to the Acidic pH in Macrophages, Promotes Intracellular Replication and Virulence of Salmonella Typhimurium
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that infects humans and animals. Survival and growth in host macrophages represents a crucial step for S. Typhimurium virulence. Many genes that are essential for S. Typhimurium proliferation in macrophages and associate...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770890/ https://www.ncbi.nlm.nih.gov/pubmed/31487966 http://dx.doi.org/10.3390/ijms20184339 |
Sumario: | Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that infects humans and animals. Survival and growth in host macrophages represents a crucial step for S. Typhimurium virulence. Many genes that are essential for S. Typhimurium proliferation in macrophages and associated with virulence are highly expressed during the intracellular lifecycle. yaeB, which encodes an RNA methyltransferase, is also upregulated during S. Typhimurium growth in macrophages. However, the involvement of YaeB in S. Typhimurium pathogenicity is still unclear. In this study, we investigated the role of YaeB in S. Typhimurium virulence. Deletion of yaeB significantly impaired S. Typhimurium growth in macrophages and virulence in mice. The effect of yaeB on pathogenicity was related to its activation of pstSCAB, a phosphate (P(i))-specific transport system that is verified here to be important for bacterial replication and virulence. Moreover, qRT-PCR data showed YaeB was induced by the acidic pH inside macrophages, and the acidic pH passed to YeaB through inhibiting global regulator histone-like nucleoid structuring (H-NS) which confirmed in this study can repress the expression of yaeB. Overall, these findings identified a new virulence regulatory network involving yaeB and provided valuable insights to the mechanisms through which acidic pH and low P(i) regulate virulence. |
---|