Cargando…
Docosahexaenoic and Eicosapentaenoic Acids Prevent Altered-Muc2 Secretion Induced by Palmitic Acid by Alleviating Endoplasmic Reticulum Stress in LS174T Goblet Cells
Diets high in saturated fatty acids (FA) represent a risk factor for the development of obesity and associated metabolic disorders, partly through their impact on the epithelial cell barrier integrity. We hypothesized that unsaturated FA could alleviate saturated FA-induced endoplasmic reticulum (ER...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770956/ https://www.ncbi.nlm.nih.gov/pubmed/31514316 http://dx.doi.org/10.3390/nu11092179 |
_version_ | 1783455604796293120 |
---|---|
author | Escoula, Quentin Bellenger, Sandrine Narce, Michel Bellenger, Jérôme |
author_facet | Escoula, Quentin Bellenger, Sandrine Narce, Michel Bellenger, Jérôme |
author_sort | Escoula, Quentin |
collection | PubMed |
description | Diets high in saturated fatty acids (FA) represent a risk factor for the development of obesity and associated metabolic disorders, partly through their impact on the epithelial cell barrier integrity. We hypothesized that unsaturated FA could alleviate saturated FA-induced endoplasmic reticulum (ER) stress occurring in intestinal secretory goblet cells, and consequently the reduced synthesis and secretion of mucins that form the protective mucus barrier. To investigate this hypothesis, we treated well-differentiated human colonic LS174T goblet cells with palmitic acid (PAL)—the most commonly used inducer of lipotoxicity in in vitro systems—or n-9, n-6, or n-3 unsaturated fatty acids alone or in co-treatment with PAL, and measured the impact of such treatments on ER stress and Muc2 production. Our results showed that only eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids protect goblet cells against ER stress-mediated altered Muc2 secretion induced by PAL, whereas neither linolenic acid nor n-9 and n-6 FA are able to provide such protection. We conclude that EPA and DHA could represent potential therapeutic nutrients against the detrimental lipotoxicity of saturated fatty acids, associated with type 2 diabetes and obesity or inflammatory bowel disease. These in vitro data remain to be explored in vivo in a context of dietary obesity. |
format | Online Article Text |
id | pubmed-6770956 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67709562019-10-30 Docosahexaenoic and Eicosapentaenoic Acids Prevent Altered-Muc2 Secretion Induced by Palmitic Acid by Alleviating Endoplasmic Reticulum Stress in LS174T Goblet Cells Escoula, Quentin Bellenger, Sandrine Narce, Michel Bellenger, Jérôme Nutrients Article Diets high in saturated fatty acids (FA) represent a risk factor for the development of obesity and associated metabolic disorders, partly through their impact on the epithelial cell barrier integrity. We hypothesized that unsaturated FA could alleviate saturated FA-induced endoplasmic reticulum (ER) stress occurring in intestinal secretory goblet cells, and consequently the reduced synthesis and secretion of mucins that form the protective mucus barrier. To investigate this hypothesis, we treated well-differentiated human colonic LS174T goblet cells with palmitic acid (PAL)—the most commonly used inducer of lipotoxicity in in vitro systems—or n-9, n-6, or n-3 unsaturated fatty acids alone or in co-treatment with PAL, and measured the impact of such treatments on ER stress and Muc2 production. Our results showed that only eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids protect goblet cells against ER stress-mediated altered Muc2 secretion induced by PAL, whereas neither linolenic acid nor n-9 and n-6 FA are able to provide such protection. We conclude that EPA and DHA could represent potential therapeutic nutrients against the detrimental lipotoxicity of saturated fatty acids, associated with type 2 diabetes and obesity or inflammatory bowel disease. These in vitro data remain to be explored in vivo in a context of dietary obesity. MDPI 2019-09-11 /pmc/articles/PMC6770956/ /pubmed/31514316 http://dx.doi.org/10.3390/nu11092179 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Escoula, Quentin Bellenger, Sandrine Narce, Michel Bellenger, Jérôme Docosahexaenoic and Eicosapentaenoic Acids Prevent Altered-Muc2 Secretion Induced by Palmitic Acid by Alleviating Endoplasmic Reticulum Stress in LS174T Goblet Cells |
title | Docosahexaenoic and Eicosapentaenoic Acids Prevent Altered-Muc2 Secretion Induced by Palmitic Acid by Alleviating Endoplasmic Reticulum Stress in LS174T Goblet Cells |
title_full | Docosahexaenoic and Eicosapentaenoic Acids Prevent Altered-Muc2 Secretion Induced by Palmitic Acid by Alleviating Endoplasmic Reticulum Stress in LS174T Goblet Cells |
title_fullStr | Docosahexaenoic and Eicosapentaenoic Acids Prevent Altered-Muc2 Secretion Induced by Palmitic Acid by Alleviating Endoplasmic Reticulum Stress in LS174T Goblet Cells |
title_full_unstemmed | Docosahexaenoic and Eicosapentaenoic Acids Prevent Altered-Muc2 Secretion Induced by Palmitic Acid by Alleviating Endoplasmic Reticulum Stress in LS174T Goblet Cells |
title_short | Docosahexaenoic and Eicosapentaenoic Acids Prevent Altered-Muc2 Secretion Induced by Palmitic Acid by Alleviating Endoplasmic Reticulum Stress in LS174T Goblet Cells |
title_sort | docosahexaenoic and eicosapentaenoic acids prevent altered-muc2 secretion induced by palmitic acid by alleviating endoplasmic reticulum stress in ls174t goblet cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770956/ https://www.ncbi.nlm.nih.gov/pubmed/31514316 http://dx.doi.org/10.3390/nu11092179 |
work_keys_str_mv | AT escoulaquentin docosahexaenoicandeicosapentaenoicacidspreventalteredmuc2secretioninducedbypalmiticacidbyalleviatingendoplasmicreticulumstressinls174tgobletcells AT bellengersandrine docosahexaenoicandeicosapentaenoicacidspreventalteredmuc2secretioninducedbypalmiticacidbyalleviatingendoplasmicreticulumstressinls174tgobletcells AT narcemichel docosahexaenoicandeicosapentaenoicacidspreventalteredmuc2secretioninducedbypalmiticacidbyalleviatingendoplasmicreticulumstressinls174tgobletcells AT bellengerjerome docosahexaenoicandeicosapentaenoicacidspreventalteredmuc2secretioninducedbypalmiticacidbyalleviatingendoplasmicreticulumstressinls174tgobletcells |