Cargando…
Predicting miRNA-Disease Associations by Incorporating Projections in Low-Dimensional Space and Local Topological Information
Predicting the potential microRNA (miRNA) candidates associated with a disease helps in exploring the mechanisms of disease development. Most recent approaches have utilized heterogeneous information about miRNAs and diseases, including miRNA similarities, disease similarities, and miRNA-disease ass...
Autores principales: | Xuan, Ping, Zhang, Yan, Zhang, Tiangang, Li, Lingling, Zhao, Lianfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770973/ https://www.ncbi.nlm.nih.gov/pubmed/31500152 http://dx.doi.org/10.3390/genes10090685 |
Ejemplares similares
-
Dual Convolutional Neural Network Based Method for Predicting Disease-Related miRNAs
por: Xuan, Ping, et al.
Publicado: (2018) -
Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks
por: Xuan, Ping, et al.
Publicado: (2019) -
The infinite-dimensional topology of function spaces
por: Van Mill, J
Publicado: (2001) -
Inferring Drug-Related Diseases Based on Convolutional Neural Network and Gated Recurrent Unit
por: Xuan, Ping, et al.
Publicado: (2019) -
Topology as fluid geometry: two-dimensional spaces
por: Cannon, James W
Publicado: (2017)