Cargando…
Predictive model for acute respiratory distress syndrome events in ICU patients in China using machine learning algorithms: a secondary analysis of a cohort study
BACKGROUND: To develop a machine learning model for predicting acute respiratory distress syndrome (ARDS) events through commonly available parameters, including baseline characteristics and clinical and laboratory parameters. METHODS: A secondary analysis of a multi-centre prospective observational...
Autores principales: | Ding, Xian-Fei, Li, Jin-Bo, Liang, Huo-Yan, Wang, Zong-Yu, Jiao, Ting-Ting, Liu, Zhuang, Yi, Liang, Bian, Wei-Shuai, Wang, Shu-Peng, Zhu, Xi, Sun, Tong-Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771100/ https://www.ncbi.nlm.nih.gov/pubmed/31570096 http://dx.doi.org/10.1186/s12967-019-2075-0 |
Ejemplares similares
-
Machine learning algorithms assist early evaluation of enteral nutrition in ICU patients
por: Wang, Ya-Xi, et al.
Publicado: (2023) -
Acute respiratory distress syndrome: focusing on secondary injury
por: Pan, Pan, et al.
Publicado: (2021) -
Effect of different levels of PEEP on mortality in ICU patients without acute respiratory distress syndrome: systematic review and meta-analysis with trial sequential analysis
por: Shao, Shuai, et al.
Publicado: (2021) -
Establishment of ICU Mortality Risk Prediction Models with Machine Learning Algorithm Using MIMIC-IV Database
por: Pang, Ke, et al.
Publicado: (2022) -
Prediction algorithm for ICU mortality and length of stay using machine learning
por: Iwase, Shinya, et al.
Publicado: (2022)