Cargando…
Independent Component Analysis for Unraveling the Complexity of Cancer Omics Datasets
Independent component analysis (ICA) is a matrix factorization approach where the signals captured by each individual matrix factors are optimized to become as mutually independent as possible. Initially suggested for solving source blind separation problems in various fields, ICA was shown to be su...
Autores principales: | Sompairac, Nicolas, Nazarov, Petr V., Czerwinska, Urszula, Cantini, Laura, Biton, Anne, Molkenov, Askhat, Zhumadilov, Zhaxybay, Barillot, Emmanuel, Radvanyi, Francois, Gorban, Alexander, Kairov, Ulykbek, Zinovyev, Andrei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771121/ https://www.ncbi.nlm.nih.gov/pubmed/31500324 http://dx.doi.org/10.3390/ijms20184414 |
Ejemplares similares
-
Determining the optimal number of independent components for reproducible transcriptomic data analysis
por: Kairov, Ulykbek, et al.
Publicado: (2017) -
Meta-Analysis of Esophageal Cancer Transcriptomes Using Independent Component Analysis
por: Ashenova, Ainur, et al.
Publicado: (2021) -
Assessing reproducibility of matrix factorization methods in independent transcriptomes
por: Cantini, Laura, et al.
Publicado: (2019) -
The First Kazakh Whole Genomes: The First Report of NGS Data
por: Akilzhanova, Ainur, et al.
Publicado: (2014) -
re-Searcher: GUI-based bioinformatics tool for simplified genomics data mining of VCF files
por: Karabayev, Daniyar, et al.
Publicado: (2021)