Cargando…
Bootstrapping complex time‐to‐event data without individual patient data, with a view toward time‐dependent exposures
We consider nonparametric and semiparametric resampling of multistate event histories by simulating multistate trajectories from an empirical multivariate hazard measure. One advantage of our approach is that it does not necessarily require individual patient data, but may be based on published info...
Autores principales: | Bluhmki, Tobias, Putter, Hein, Allignol, Arthur, Beyersmann, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771611/ https://www.ncbi.nlm.nih.gov/pubmed/31162707 http://dx.doi.org/10.1002/sim.8177 |
Ejemplares similares
-
The wild bootstrap for multivariate Nelson–Aalen estimators
por: Bluhmki, Tobias, et al.
Publicado: (2018) -
Modeling unmeasured baseline information in observational
time-to-event data subject to delayed study entry
por: Stegherr, Regina, et al.
Publicado: (2023) -
Understanding competing risks: a simulation point of view
por: Allignol, Arthur, et al.
Publicado: (2011) -
Competing Risks and Multistate Models with R
por: Beyersmann, Jan, et al.
Publicado: (2012) -
Gaussian process regression bootstrapping: exploring the effects of uncertainty in time course data
por: Kirk, Paul D. W., et al.
Publicado: (2009)