Cargando…

Sub‐Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu(II)‐labelling of Double‐Histidine Motifs with Lower Temperature

Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to the studies of biomolecules by providing highly accurate geometric constraints. Combining double‐histidine motifs with Cu(II) spin labels can further increase the precision of distance meas...

Descripción completa

Detalles Bibliográficos
Autores principales: Wort, Joshua L., Ackermann, Katrin, Giannoulis, Angeliki, Stewart, Alan J., Norman, David G., Bode, Bela E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771633/
https://www.ncbi.nlm.nih.gov/pubmed/31218813
http://dx.doi.org/10.1002/anie.201904848
_version_ 1783455731431768064
author Wort, Joshua L.
Ackermann, Katrin
Giannoulis, Angeliki
Stewart, Alan J.
Norman, David G.
Bode, Bela E.
author_facet Wort, Joshua L.
Ackermann, Katrin
Giannoulis, Angeliki
Stewart, Alan J.
Norman, David G.
Bode, Bela E.
author_sort Wort, Joshua L.
collection PubMed
description Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to the studies of biomolecules by providing highly accurate geometric constraints. Combining double‐histidine motifs with Cu(II) spin labels can further increase the precision of distance measurements. It is also useful for proteins containing essential cysteines that can interfere with thiol‐specific labelling. However, the non‐covalent Cu(II) coordination approach is vulnerable to low binding‐affinity. Herein, dissociation constants (K (D)) are investigated directly from the modulation depths of relaxation‐induced dipolar modulation enhancement (RIDME) EPR experiments. This reveals low‐ to sub‐μm Cu(II) K (D)s under EPR distance measurement conditions at cryogenic temperatures. We show the feasibility of exploiting the double‐histidine motif for EPR applications even at sub‐μm protein concentrations in orthogonally labelled Cu(II)–nitroxide systems using a commercial Q‐band EPR instrument.
format Online
Article
Text
id pubmed-6771633
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-67716332019-10-03 Sub‐Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu(II)‐labelling of Double‐Histidine Motifs with Lower Temperature Wort, Joshua L. Ackermann, Katrin Giannoulis, Angeliki Stewart, Alan J. Norman, David G. Bode, Bela E. Angew Chem Int Ed Engl Communications Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to the studies of biomolecules by providing highly accurate geometric constraints. Combining double‐histidine motifs with Cu(II) spin labels can further increase the precision of distance measurements. It is also useful for proteins containing essential cysteines that can interfere with thiol‐specific labelling. However, the non‐covalent Cu(II) coordination approach is vulnerable to low binding‐affinity. Herein, dissociation constants (K (D)) are investigated directly from the modulation depths of relaxation‐induced dipolar modulation enhancement (RIDME) EPR experiments. This reveals low‐ to sub‐μm Cu(II) K (D)s under EPR distance measurement conditions at cryogenic temperatures. We show the feasibility of exploiting the double‐histidine motif for EPR applications even at sub‐μm protein concentrations in orthogonally labelled Cu(II)–nitroxide systems using a commercial Q‐band EPR instrument. John Wiley and Sons Inc. 2019-07-18 2019-08-19 /pmc/articles/PMC6771633/ /pubmed/31218813 http://dx.doi.org/10.1002/anie.201904848 Text en © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Wort, Joshua L.
Ackermann, Katrin
Giannoulis, Angeliki
Stewart, Alan J.
Norman, David G.
Bode, Bela E.
Sub‐Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu(II)‐labelling of Double‐Histidine Motifs with Lower Temperature
title Sub‐Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu(II)‐labelling of Double‐Histidine Motifs with Lower Temperature
title_full Sub‐Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu(II)‐labelling of Double‐Histidine Motifs with Lower Temperature
title_fullStr Sub‐Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu(II)‐labelling of Double‐Histidine Motifs with Lower Temperature
title_full_unstemmed Sub‐Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu(II)‐labelling of Double‐Histidine Motifs with Lower Temperature
title_short Sub‐Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu(II)‐labelling of Double‐Histidine Motifs with Lower Temperature
title_sort sub‐micromolar pulse dipolar epr spectroscopy reveals increasing cu(ii)‐labelling of double‐histidine motifs with lower temperature
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771633/
https://www.ncbi.nlm.nih.gov/pubmed/31218813
http://dx.doi.org/10.1002/anie.201904848
work_keys_str_mv AT wortjoshual submicromolarpulsedipolareprspectroscopyrevealsincreasingcuiilabellingofdoublehistidinemotifswithlowertemperature
AT ackermannkatrin submicromolarpulsedipolareprspectroscopyrevealsincreasingcuiilabellingofdoublehistidinemotifswithlowertemperature
AT giannoulisangeliki submicromolarpulsedipolareprspectroscopyrevealsincreasingcuiilabellingofdoublehistidinemotifswithlowertemperature
AT stewartalanj submicromolarpulsedipolareprspectroscopyrevealsincreasingcuiilabellingofdoublehistidinemotifswithlowertemperature
AT normandavidg submicromolarpulsedipolareprspectroscopyrevealsincreasingcuiilabellingofdoublehistidinemotifswithlowertemperature
AT bodebelae submicromolarpulsedipolareprspectroscopyrevealsincreasingcuiilabellingofdoublehistidinemotifswithlowertemperature