Cargando…

Biophysically motivated efficient estimation of the spatially isotropic [Formula: see text] component from a single gradient‐recalled echo measurement

PURPOSE: To propose and validate an efficient method, based on a biophysically motivated signal model, for removing the orientation‐dependent part of [Formula: see text] using a single gradient‐recalled echo (GRE) measurement. METHODS: The proposed method utilized a temporal second‐order approximati...

Descripción completa

Detalles Bibliográficos
Autores principales: Papazoglou, Sebastian, Streubel, Tobias, Ashtarayeh, Mohammad, Pine, Kerrin J., Edwards, Luke J., Brammerloh, Malte, Kirilina, Evgeniya, Morawski, Markus, Jäger, Carsten, Geyer, Stefan, Callaghan, Martina F., Weiskopf, Nikolaus, Mohammadi, Siawoosh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771860/
https://www.ncbi.nlm.nih.gov/pubmed/31293007
http://dx.doi.org/10.1002/mrm.27863
_version_ 1783455784441479168
author Papazoglou, Sebastian
Streubel, Tobias
Ashtarayeh, Mohammad
Pine, Kerrin J.
Edwards, Luke J.
Brammerloh, Malte
Kirilina, Evgeniya
Morawski, Markus
Jäger, Carsten
Geyer, Stefan
Callaghan, Martina F.
Weiskopf, Nikolaus
Mohammadi, Siawoosh
author_facet Papazoglou, Sebastian
Streubel, Tobias
Ashtarayeh, Mohammad
Pine, Kerrin J.
Edwards, Luke J.
Brammerloh, Malte
Kirilina, Evgeniya
Morawski, Markus
Jäger, Carsten
Geyer, Stefan
Callaghan, Martina F.
Weiskopf, Nikolaus
Mohammadi, Siawoosh
author_sort Papazoglou, Sebastian
collection PubMed
description PURPOSE: To propose and validate an efficient method, based on a biophysically motivated signal model, for removing the orientation‐dependent part of [Formula: see text] using a single gradient‐recalled echo (GRE) measurement. METHODS: The proposed method utilized a temporal second‐order approximation of the hollow‐cylinder‐fiber model, in which the parameter describing the linear signal decay corresponded to the orientation‐independent part of [Formula: see text]. The estimated parameters were compared to the classical, mono‐exponential decay model for [Formula: see text] in a sample of an ex vivo human optic chiasm (OC). The OC was measured at 16 distinct orientations relative to the external magnetic field using GRE at 7T. To show that the proposed signal model can remove the orientation dependence of [Formula: see text] , it was compared to the established phenomenological method for separating [Formula: see text] into orientation‐dependent and ‐independent parts. RESULTS: Using the phenomenological method on the classical signal model, the well‐known separation of [Formula: see text] into orientation‐dependent and ‐independent parts was verified. For the proposed model, no significant orientation dependence in the linear signal decay parameter was observed. CONCLUSIONS: Since the proposed second‐order model features orientation‐dependent and ‐independent components at distinct temporal orders, it can be used to remove the orientation dependence of [Formula: see text] using only a single GRE measurement.
format Online
Article
Text
id pubmed-6771860
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-67718602019-10-07 Biophysically motivated efficient estimation of the spatially isotropic [Formula: see text] component from a single gradient‐recalled echo measurement Papazoglou, Sebastian Streubel, Tobias Ashtarayeh, Mohammad Pine, Kerrin J. Edwards, Luke J. Brammerloh, Malte Kirilina, Evgeniya Morawski, Markus Jäger, Carsten Geyer, Stefan Callaghan, Martina F. Weiskopf, Nikolaus Mohammadi, Siawoosh Magn Reson Med Notes—Imaging Methodology PURPOSE: To propose and validate an efficient method, based on a biophysically motivated signal model, for removing the orientation‐dependent part of [Formula: see text] using a single gradient‐recalled echo (GRE) measurement. METHODS: The proposed method utilized a temporal second‐order approximation of the hollow‐cylinder‐fiber model, in which the parameter describing the linear signal decay corresponded to the orientation‐independent part of [Formula: see text]. The estimated parameters were compared to the classical, mono‐exponential decay model for [Formula: see text] in a sample of an ex vivo human optic chiasm (OC). The OC was measured at 16 distinct orientations relative to the external magnetic field using GRE at 7T. To show that the proposed signal model can remove the orientation dependence of [Formula: see text] , it was compared to the established phenomenological method for separating [Formula: see text] into orientation‐dependent and ‐independent parts. RESULTS: Using the phenomenological method on the classical signal model, the well‐known separation of [Formula: see text] into orientation‐dependent and ‐independent parts was verified. For the proposed model, no significant orientation dependence in the linear signal decay parameter was observed. CONCLUSIONS: Since the proposed second‐order model features orientation‐dependent and ‐independent components at distinct temporal orders, it can be used to remove the orientation dependence of [Formula: see text] using only a single GRE measurement. John Wiley and Sons Inc. 2019-07-10 2019-11 /pmc/articles/PMC6771860/ /pubmed/31293007 http://dx.doi.org/10.1002/mrm.27863 Text en © 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Notes—Imaging Methodology
Papazoglou, Sebastian
Streubel, Tobias
Ashtarayeh, Mohammad
Pine, Kerrin J.
Edwards, Luke J.
Brammerloh, Malte
Kirilina, Evgeniya
Morawski, Markus
Jäger, Carsten
Geyer, Stefan
Callaghan, Martina F.
Weiskopf, Nikolaus
Mohammadi, Siawoosh
Biophysically motivated efficient estimation of the spatially isotropic [Formula: see text] component from a single gradient‐recalled echo measurement
title Biophysically motivated efficient estimation of the spatially isotropic [Formula: see text] component from a single gradient‐recalled echo measurement
title_full Biophysically motivated efficient estimation of the spatially isotropic [Formula: see text] component from a single gradient‐recalled echo measurement
title_fullStr Biophysically motivated efficient estimation of the spatially isotropic [Formula: see text] component from a single gradient‐recalled echo measurement
title_full_unstemmed Biophysically motivated efficient estimation of the spatially isotropic [Formula: see text] component from a single gradient‐recalled echo measurement
title_short Biophysically motivated efficient estimation of the spatially isotropic [Formula: see text] component from a single gradient‐recalled echo measurement
title_sort biophysically motivated efficient estimation of the spatially isotropic [formula: see text] component from a single gradient‐recalled echo measurement
topic Notes—Imaging Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771860/
https://www.ncbi.nlm.nih.gov/pubmed/31293007
http://dx.doi.org/10.1002/mrm.27863
work_keys_str_mv AT papazoglousebastian biophysicallymotivatedefficientestimationofthespatiallyisotropicformulaseetextcomponentfromasinglegradientrecalledechomeasurement
AT streubeltobias biophysicallymotivatedefficientestimationofthespatiallyisotropicformulaseetextcomponentfromasinglegradientrecalledechomeasurement
AT ashtarayehmohammad biophysicallymotivatedefficientestimationofthespatiallyisotropicformulaseetextcomponentfromasinglegradientrecalledechomeasurement
AT pinekerrinj biophysicallymotivatedefficientestimationofthespatiallyisotropicformulaseetextcomponentfromasinglegradientrecalledechomeasurement
AT edwardslukej biophysicallymotivatedefficientestimationofthespatiallyisotropicformulaseetextcomponentfromasinglegradientrecalledechomeasurement
AT brammerlohmalte biophysicallymotivatedefficientestimationofthespatiallyisotropicformulaseetextcomponentfromasinglegradientrecalledechomeasurement
AT kirilinaevgeniya biophysicallymotivatedefficientestimationofthespatiallyisotropicformulaseetextcomponentfromasinglegradientrecalledechomeasurement
AT morawskimarkus biophysicallymotivatedefficientestimationofthespatiallyisotropicformulaseetextcomponentfromasinglegradientrecalledechomeasurement
AT jagercarsten biophysicallymotivatedefficientestimationofthespatiallyisotropicformulaseetextcomponentfromasinglegradientrecalledechomeasurement
AT geyerstefan biophysicallymotivatedefficientestimationofthespatiallyisotropicformulaseetextcomponentfromasinglegradientrecalledechomeasurement
AT callaghanmartinaf biophysicallymotivatedefficientestimationofthespatiallyisotropicformulaseetextcomponentfromasinglegradientrecalledechomeasurement
AT weiskopfnikolaus biophysicallymotivatedefficientestimationofthespatiallyisotropicformulaseetextcomponentfromasinglegradientrecalledechomeasurement
AT mohammadisiawoosh biophysicallymotivatedefficientestimationofthespatiallyisotropicformulaseetextcomponentfromasinglegradientrecalledechomeasurement