Cargando…

On‐Surface Synthesis of Porous Carbon Nanoribbons on Silver: Reaction Kinetics and the Influence of the Surface Structure

We report on the influence of the surface structure and the reaction kinetics in the bottom‐up fabrication of porous nanoribbons on silver surfaces using low‐temperature scanning tunneling microscopy. The porous carbon nanoribbons are fabricated by the polymerization of 1,3,5‐tris(3‐bromophenyl)benz...

Descripción completa

Detalles Bibliográficos
Autores principales: Ammon, Maximilian, Haller, Martin, Sorayya, Shadi, Maier, Sabine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771863/
https://www.ncbi.nlm.nih.gov/pubmed/31400291
http://dx.doi.org/10.1002/cphc.201900347
Descripción
Sumario:We report on the influence of the surface structure and the reaction kinetics in the bottom‐up fabrication of porous nanoribbons on silver surfaces using low‐temperature scanning tunneling microscopy. The porous carbon nanoribbons are fabricated by the polymerization of 1,3,5‐tris(3‐bromophenyl)benzene directly on the Ag surface using an Ullmann‐type reaction in combination with dehydrogenative coupling reactions. We demonstrate the successful on‐surface synthesis of porous nanoribbons on Ag(111) and Ag(100) even though the self‐assemblies of the intermediate organometallic structures and covalently‐linked polymer chains are different on both surfaces. Furthermore, we present the formation of isolated porous nanoribbons by kinetic control. Our results give valuable insights into the role of substrate‐induced templating effects and the reaction kinetics in the on‐surface synthesis of conformationally flexible molecules.