Cargando…
Estimation and prediction for a mechanistic model of measles transmission using particle filtering and maximum likelihood estimation
Disease incidence reported directly within health systems frequently reflects a partial observation relative to the true incidence in the population. State‐space models present a general framework for inferring both the dynamics of infectious disease processes and the unobserved burden of disease in...
Autores principales: | Eilertson, Kirsten E., Fricks, John, Ferrari, Matthew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771900/ https://www.ncbi.nlm.nih.gov/pubmed/31290184 http://dx.doi.org/10.1002/sim.8290 |
Ejemplares similares
-
Maximum Penalized Likelihood Estimation
por: LaRiccia, Vincent N, et al.
Publicado: (2009) -
Maximum likelihood estimation of functional relationships
por: Nagelkerke, Nico J D
Publicado: (1992) -
Likelihood-based estimation and prediction for a measles outbreak in Samoa
por: Wu, David, et al.
Publicado: (2023) -
Restricted maximum likelihood estimation for animal models using derivatives of the likelihood
por: Meyer, K, et al.
Publicado: (1996) -
Dynamic Indoor Localization Using Maximum Likelihood Particle Filtering
por: Wang, Wenxu, et al.
Publicado: (2021)