Cargando…
The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error
It is widely accepted that unexpected sensory consequences of self‐action engage the cerebellum. However, we currently lack consensus on where in the cerebellum, we find fine‐grained differentiation to unexpected sensory feedback. This may result from methodological diversity in task‐based human neu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771970/ https://www.ncbi.nlm.nih.gov/pubmed/31155815 http://dx.doi.org/10.1002/hbm.24681 |
_version_ | 1783455805582868480 |
---|---|
author | Johnson, Joseph F. Belyk, Michel Schwartze, Michael Pinheiro, Ana P. Kotz, Sonja A. |
author_facet | Johnson, Joseph F. Belyk, Michel Schwartze, Michael Pinheiro, Ana P. Kotz, Sonja A. |
author_sort | Johnson, Joseph F. |
collection | PubMed |
description | It is widely accepted that unexpected sensory consequences of self‐action engage the cerebellum. However, we currently lack consensus on where in the cerebellum, we find fine‐grained differentiation to unexpected sensory feedback. This may result from methodological diversity in task‐based human neuroimaging studies that experimentally alter the quality of self‐generated sensory feedback. We gathered existing studies that manipulated sensory feedback using a variety of methodological approaches and performed activation likelihood estimation (ALE) meta‐analyses. Only half of these studies reported cerebellar activation with considerable variation in spatial location. Consequently, ALE analyses did not reveal significantly increased likelihood of activation in the cerebellum despite the broad scientific consensus of the cerebellum's involvement. In light of the high degree of methodological variability in published studies, we tested for statistical dependence between methodological factors that varied across the published studies. Experiments that elicited an adaptive response to continuously altered sensory feedback more frequently reported activation in the cerebellum than those experiments that did not induce adaptation. These findings may explain the surprisingly low rate of significant cerebellar activation across brain imaging studies investigating unexpected sensory feedback. Furthermore, limitations of functional magnetic resonance imaging to probe the cerebellum could play a role as climbing fiber activity associated with feedback error processing may not be captured by it. We provide methodological recommendations that may guide future studies. |
format | Online Article Text |
id | pubmed-6771970 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67719702019-10-07 The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error Johnson, Joseph F. Belyk, Michel Schwartze, Michael Pinheiro, Ana P. Kotz, Sonja A. Hum Brain Mapp Research Articles It is widely accepted that unexpected sensory consequences of self‐action engage the cerebellum. However, we currently lack consensus on where in the cerebellum, we find fine‐grained differentiation to unexpected sensory feedback. This may result from methodological diversity in task‐based human neuroimaging studies that experimentally alter the quality of self‐generated sensory feedback. We gathered existing studies that manipulated sensory feedback using a variety of methodological approaches and performed activation likelihood estimation (ALE) meta‐analyses. Only half of these studies reported cerebellar activation with considerable variation in spatial location. Consequently, ALE analyses did not reveal significantly increased likelihood of activation in the cerebellum despite the broad scientific consensus of the cerebellum's involvement. In light of the high degree of methodological variability in published studies, we tested for statistical dependence between methodological factors that varied across the published studies. Experiments that elicited an adaptive response to continuously altered sensory feedback more frequently reported activation in the cerebellum than those experiments that did not induce adaptation. These findings may explain the surprisingly low rate of significant cerebellar activation across brain imaging studies investigating unexpected sensory feedback. Furthermore, limitations of functional magnetic resonance imaging to probe the cerebellum could play a role as climbing fiber activity associated with feedback error processing may not be captured by it. We provide methodological recommendations that may guide future studies. John Wiley & Sons, Inc. 2019-06-02 /pmc/articles/PMC6771970/ /pubmed/31155815 http://dx.doi.org/10.1002/hbm.24681 Text en © 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Johnson, Joseph F. Belyk, Michel Schwartze, Michael Pinheiro, Ana P. Kotz, Sonja A. The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error |
title | The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error |
title_full | The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error |
title_fullStr | The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error |
title_full_unstemmed | The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error |
title_short | The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error |
title_sort | role of the cerebellum in adaptation: ale meta‐analyses on sensory feedback error |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771970/ https://www.ncbi.nlm.nih.gov/pubmed/31155815 http://dx.doi.org/10.1002/hbm.24681 |
work_keys_str_mv | AT johnsonjosephf theroleofthecerebelluminadaptationalemetaanalysesonsensoryfeedbackerror AT belykmichel theroleofthecerebelluminadaptationalemetaanalysesonsensoryfeedbackerror AT schwartzemichael theroleofthecerebelluminadaptationalemetaanalysesonsensoryfeedbackerror AT pinheiroanap theroleofthecerebelluminadaptationalemetaanalysesonsensoryfeedbackerror AT kotzsonjaa theroleofthecerebelluminadaptationalemetaanalysesonsensoryfeedbackerror AT johnsonjosephf roleofthecerebelluminadaptationalemetaanalysesonsensoryfeedbackerror AT belykmichel roleofthecerebelluminadaptationalemetaanalysesonsensoryfeedbackerror AT schwartzemichael roleofthecerebelluminadaptationalemetaanalysesonsensoryfeedbackerror AT pinheiroanap roleofthecerebelluminadaptationalemetaanalysesonsensoryfeedbackerror AT kotzsonjaa roleofthecerebelluminadaptationalemetaanalysesonsensoryfeedbackerror |