Cargando…
Evaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Images
Identifying nuclei is often a critical first step in analyzing microscopy images of cells and classical image processing algorithms are most commonly used for this task. Recent developments in deep learning can yield superior accuracy, but typical evaluation metrics for nucleus segmentation do not s...
Autores principales: | Caicedo, Juan C., Roth, Jonathan, Goodman, Allen, Becker, Tim, Karhohs, Kyle W., Broisin, Matthieu, Molnar, Csaba, McQuin, Claire, Singh, Shantanu, Theis, Fabian J., Carpenter, Anne E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771982/ https://www.ncbi.nlm.nih.gov/pubmed/31313519 http://dx.doi.org/10.1002/cyto.a.23863 |
Ejemplares similares
-
Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl
por: Caicedo, Juan C., et al.
Publicado: (2019) -
Publisher Correction: Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl
por: Caicedo, Juan C., et al.
Publicado: (2020) -
CellProfiler 3.0: Next-generation image processing for biology
por: McQuin, Claire, et al.
Publicado: (2018) -
Label‐Free Leukemia Monitoring by Computer Vision
por: Doan, Minh, et al.
Publicado: (2020) -
nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer
por: Hollandi, Reka, et al.
Publicado: (2020)