Cargando…

Strong Exchange Couplings Drastically Slow Down Magnetization Relaxation in an Air‐Stable Cobalt(II)‐Radical Single‐Molecule Magnet (SMM)

The energy barrier leading to magnetic bistability in molecular clusters is determined by the magnetic anisotropy of the cluster constituents. By incorporating a highly anisotropic four‐coordinate cobalt(II) building block into a strongly coupled fully air‐ and moisture‐stable three‐spin system, it...

Descripción completa

Detalles Bibliográficos
Autores principales: Albold, Uta, Bamberger, Heiko, Hallmen, Philipp P., van Slageren, Joris, Sarkar, Biprajit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771987/
https://www.ncbi.nlm.nih.gov/pubmed/31050153
http://dx.doi.org/10.1002/anie.201904645
_version_ 1783455809644003328
author Albold, Uta
Bamberger, Heiko
Hallmen, Philipp P.
van Slageren, Joris
Sarkar, Biprajit
author_facet Albold, Uta
Bamberger, Heiko
Hallmen, Philipp P.
van Slageren, Joris
Sarkar, Biprajit
author_sort Albold, Uta
collection PubMed
description The energy barrier leading to magnetic bistability in molecular clusters is determined by the magnetic anisotropy of the cluster constituents. By incorporating a highly anisotropic four‐coordinate cobalt(II) building block into a strongly coupled fully air‐ and moisture‐stable three‐spin system, it proved possible to suppress under‐barrier Raman processes leading to 350‐fold increase of magnetization relaxation time and pronounced hysteresis. Relaxation times of up to 9 hours at low temperatures were found.
format Online
Article
Text
id pubmed-6771987
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-67719872019-10-07 Strong Exchange Couplings Drastically Slow Down Magnetization Relaxation in an Air‐Stable Cobalt(II)‐Radical Single‐Molecule Magnet (SMM) Albold, Uta Bamberger, Heiko Hallmen, Philipp P. van Slageren, Joris Sarkar, Biprajit Angew Chem Int Ed Engl Communications The energy barrier leading to magnetic bistability in molecular clusters is determined by the magnetic anisotropy of the cluster constituents. By incorporating a highly anisotropic four‐coordinate cobalt(II) building block into a strongly coupled fully air‐ and moisture‐stable three‐spin system, it proved possible to suppress under‐barrier Raman processes leading to 350‐fold increase of magnetization relaxation time and pronounced hysteresis. Relaxation times of up to 9 hours at low temperatures were found. John Wiley and Sons Inc. 2019-06-06 2019-07-15 /pmc/articles/PMC6771987/ /pubmed/31050153 http://dx.doi.org/10.1002/anie.201904645 Text en © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Communications
Albold, Uta
Bamberger, Heiko
Hallmen, Philipp P.
van Slageren, Joris
Sarkar, Biprajit
Strong Exchange Couplings Drastically Slow Down Magnetization Relaxation in an Air‐Stable Cobalt(II)‐Radical Single‐Molecule Magnet (SMM)
title Strong Exchange Couplings Drastically Slow Down Magnetization Relaxation in an Air‐Stable Cobalt(II)‐Radical Single‐Molecule Magnet (SMM)
title_full Strong Exchange Couplings Drastically Slow Down Magnetization Relaxation in an Air‐Stable Cobalt(II)‐Radical Single‐Molecule Magnet (SMM)
title_fullStr Strong Exchange Couplings Drastically Slow Down Magnetization Relaxation in an Air‐Stable Cobalt(II)‐Radical Single‐Molecule Magnet (SMM)
title_full_unstemmed Strong Exchange Couplings Drastically Slow Down Magnetization Relaxation in an Air‐Stable Cobalt(II)‐Radical Single‐Molecule Magnet (SMM)
title_short Strong Exchange Couplings Drastically Slow Down Magnetization Relaxation in an Air‐Stable Cobalt(II)‐Radical Single‐Molecule Magnet (SMM)
title_sort strong exchange couplings drastically slow down magnetization relaxation in an air‐stable cobalt(ii)‐radical single‐molecule magnet (smm)
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771987/
https://www.ncbi.nlm.nih.gov/pubmed/31050153
http://dx.doi.org/10.1002/anie.201904645
work_keys_str_mv AT albolduta strongexchangecouplingsdrasticallyslowdownmagnetizationrelaxationinanairstablecobaltiiradicalsinglemoleculemagnetsmm
AT bambergerheiko strongexchangecouplingsdrasticallyslowdownmagnetizationrelaxationinanairstablecobaltiiradicalsinglemoleculemagnetsmm
AT hallmenphilippp strongexchangecouplingsdrasticallyslowdownmagnetizationrelaxationinanairstablecobaltiiradicalsinglemoleculemagnetsmm
AT vanslagerenjoris strongexchangecouplingsdrasticallyslowdownmagnetizationrelaxationinanairstablecobaltiiradicalsinglemoleculemagnetsmm
AT sarkarbiprajit strongexchangecouplingsdrasticallyslowdownmagnetizationrelaxationinanairstablecobaltiiradicalsinglemoleculemagnetsmm