Cargando…
Aerial-trained deep learning networks for surveying cetaceans from satellite imagery
Most cetacean species are wide-ranging and highly mobile, creating significant challenges for researchers by limiting the scope of data that can be collected and leaving large areas un-surveyed. Aerial surveys have proven an effective way to locate and study cetacean movements but are costly and lim...
Autores principales: | Borowicz, Alex, Le, Hieu, Humphries, Grant, Nehls, Georg, Höschle, Caroline, Kosarev, Vladislav, Lynch, Heather J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772036/ https://www.ncbi.nlm.nih.gov/pubmed/31574136 http://dx.doi.org/10.1371/journal.pone.0212532 |
Ejemplares similares
-
The Potential of Satellite Imagery for Surveying Whales
por: Höschle, Caroline, et al.
Publicado: (2021) -
Deep Learning for satellite imagery
por: Boget, Yoann
Publicado: (2019) -
Insect-Inspired Navigation Algorithm for an Aerial Agent Using Satellite Imagery
por: Gaffin, Douglas D., et al.
Publicado: (2015) -
Whale counting in satellite and aerial images with deep learning
por: Guirado, Emilio, et al.
Publicado: (2019) -
Deep Learning for Understanding Satellite Imagery: An Experimental Survey
por: Mohanty, Sharada Prasanna, et al.
Publicado: (2020)