Cargando…
The rotating magnetocaloric effect as a potential mechanism for natural magnetic senses
Many animals are able to sense the earth’s magnetic field, including varieties of arthropods and members of all major vertebrate groups. While the existence of this magnetic sense is widely accepted, the mechanism of action remains unknown. Building from recent work on synthetic magnetoreceptors, we...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773214/ https://www.ncbi.nlm.nih.gov/pubmed/31574085 http://dx.doi.org/10.1371/journal.pone.0222401 |
Sumario: | Many animals are able to sense the earth’s magnetic field, including varieties of arthropods and members of all major vertebrate groups. While the existence of this magnetic sense is widely accepted, the mechanism of action remains unknown. Building from recent work on synthetic magnetoreceptors, we propose a new model for natural magnetosensation based on the rotating magnetocaloric effect (RME), which predicts that heat generated by magnetic nanoparticles may allow animals to detect features of the earth’s magnetic field. Using this model, we identify the conditions for the RME to produce physiological signals in response to the earth’s magnetic field and suggest experiments to distinguish between candidate mechanisms of magnetoreception. |
---|