Cargando…
Electrolyte Effects on the Stability of Ni−Mo Cathodes for the Hydrogen Evolution Reaction
Water electrolysis to form hydrogen as a solar fuel requires highly effective catalysts. In this work, theoretical and experimental studies are performed on the activity and stability of Ni−Mo cathodes for this reaction. Density functional theory studies show various Ni−Mo facets to be active for th...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773243/ https://www.ncbi.nlm.nih.gov/pubmed/31095900 http://dx.doi.org/10.1002/cssc.201900617 |
_version_ | 1783455866133938176 |
---|---|
author | Wijten, Jochem H. J. Riemersma, Romy L. Gauthier, Joseph Mandemaker, Laurens D. B. Verhoeven, M. W. G. M. (Tiny) Hofmann, Jan P. Chan, Karen Weckhuysen, Bert M. |
author_facet | Wijten, Jochem H. J. Riemersma, Romy L. Gauthier, Joseph Mandemaker, Laurens D. B. Verhoeven, M. W. G. M. (Tiny) Hofmann, Jan P. Chan, Karen Weckhuysen, Bert M. |
author_sort | Wijten, Jochem H. J. |
collection | PubMed |
description | Water electrolysis to form hydrogen as a solar fuel requires highly effective catalysts. In this work, theoretical and experimental studies are performed on the activity and stability of Ni−Mo cathodes for this reaction. Density functional theory studies show various Ni−Mo facets to be active for the hydrogen evolution reaction, Ni segregation to be thermodynamically favorable, and Mo vacancy formation to be favorable even without an applied potential. Electrolyte effects on the long‐term stability of Ni−Mo cathodes are determined. Ni−Mo is compared before and after up to 100 h of continuous operation. It is shown that Ni−Mo is unstable in alkaline media, owing to Mo leaching in the form of MoO(4) (2−), ultimately leading to a decrease in absolute overpotential. It is found that the electrolyte, the alkali cations, and the pH all influence Mo leaching. Changing the cation in the electrolyte from Li to Na to K influences the surface segregation of Mo and pushes the reaction towards Mo dissolution. Decreasing the pH decreases the OH(−) concentration and in this manner inhibits Mo leaching. Of the electrolytes studied, in terms of stability, the best to use is LiOH at pH 13. Thus, a mechanism for Mo leaching is presented alongside ways to influence the stability and make the Ni−Mo material more viable for renewable energy storage in chemical bonds. |
format | Online Article Text |
id | pubmed-6773243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67732432019-10-07 Electrolyte Effects on the Stability of Ni−Mo Cathodes for the Hydrogen Evolution Reaction Wijten, Jochem H. J. Riemersma, Romy L. Gauthier, Joseph Mandemaker, Laurens D. B. Verhoeven, M. W. G. M. (Tiny) Hofmann, Jan P. Chan, Karen Weckhuysen, Bert M. ChemSusChem Full Papers Water electrolysis to form hydrogen as a solar fuel requires highly effective catalysts. In this work, theoretical and experimental studies are performed on the activity and stability of Ni−Mo cathodes for this reaction. Density functional theory studies show various Ni−Mo facets to be active for the hydrogen evolution reaction, Ni segregation to be thermodynamically favorable, and Mo vacancy formation to be favorable even without an applied potential. Electrolyte effects on the long‐term stability of Ni−Mo cathodes are determined. Ni−Mo is compared before and after up to 100 h of continuous operation. It is shown that Ni−Mo is unstable in alkaline media, owing to Mo leaching in the form of MoO(4) (2−), ultimately leading to a decrease in absolute overpotential. It is found that the electrolyte, the alkali cations, and the pH all influence Mo leaching. Changing the cation in the electrolyte from Li to Na to K influences the surface segregation of Mo and pushes the reaction towards Mo dissolution. Decreasing the pH decreases the OH(−) concentration and in this manner inhibits Mo leaching. Of the electrolytes studied, in terms of stability, the best to use is LiOH at pH 13. Thus, a mechanism for Mo leaching is presented alongside ways to influence the stability and make the Ni−Mo material more viable for renewable energy storage in chemical bonds. John Wiley and Sons Inc. 2019-06-26 2019-08-08 /pmc/articles/PMC6773243/ /pubmed/31095900 http://dx.doi.org/10.1002/cssc.201900617 Text en © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Full Papers Wijten, Jochem H. J. Riemersma, Romy L. Gauthier, Joseph Mandemaker, Laurens D. B. Verhoeven, M. W. G. M. (Tiny) Hofmann, Jan P. Chan, Karen Weckhuysen, Bert M. Electrolyte Effects on the Stability of Ni−Mo Cathodes for the Hydrogen Evolution Reaction |
title | Electrolyte Effects on the Stability of Ni−Mo Cathodes for the Hydrogen Evolution Reaction |
title_full | Electrolyte Effects on the Stability of Ni−Mo Cathodes for the Hydrogen Evolution Reaction |
title_fullStr | Electrolyte Effects on the Stability of Ni−Mo Cathodes for the Hydrogen Evolution Reaction |
title_full_unstemmed | Electrolyte Effects on the Stability of Ni−Mo Cathodes for the Hydrogen Evolution Reaction |
title_short | Electrolyte Effects on the Stability of Ni−Mo Cathodes for the Hydrogen Evolution Reaction |
title_sort | electrolyte effects on the stability of ni−mo cathodes for the hydrogen evolution reaction |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773243/ https://www.ncbi.nlm.nih.gov/pubmed/31095900 http://dx.doi.org/10.1002/cssc.201900617 |
work_keys_str_mv | AT wijtenjochemhj electrolyteeffectsonthestabilityofnimocathodesforthehydrogenevolutionreaction AT riemersmaromyl electrolyteeffectsonthestabilityofnimocathodesforthehydrogenevolutionreaction AT gauthierjoseph electrolyteeffectsonthestabilityofnimocathodesforthehydrogenevolutionreaction AT mandemakerlaurensdb electrolyteeffectsonthestabilityofnimocathodesforthehydrogenevolutionreaction AT verhoevenmwgmtiny electrolyteeffectsonthestabilityofnimocathodesforthehydrogenevolutionreaction AT hofmannjanp electrolyteeffectsonthestabilityofnimocathodesforthehydrogenevolutionreaction AT chankaren electrolyteeffectsonthestabilityofnimocathodesforthehydrogenevolutionreaction AT weckhuysenbertm electrolyteeffectsonthestabilityofnimocathodesforthehydrogenevolutionreaction |