Cargando…
Delta-S-Cys-Albumin: A Lab Test that Quantifies Cumulative Exposure of Archived Human Blood Plasma and Serum Samples to Thawed Conditions
Exposure of blood plasma/serum (P/S) to thawed conditions (> −30 °C) can produce biomolecular changes that skew measurements of biomarkers within archived patient samples, potentially rendering them unfit for molecular analysis. Because freeze-thaw histories are often poorly documented, objective...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Biochemistry and Molecular Biology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773563/ https://www.ncbi.nlm.nih.gov/pubmed/31324658 http://dx.doi.org/10.1074/mcp.TIR119.001659 |
Sumario: | Exposure of blood plasma/serum (P/S) to thawed conditions (> −30 °C) can produce biomolecular changes that skew measurements of biomarkers within archived patient samples, potentially rendering them unfit for molecular analysis. Because freeze-thaw histories are often poorly documented, objective methods for assessing molecular fitness before analysis are needed. We report a 10-μl, dilute-and-shoot, intact-protein mass spectrometric assay of albumin proteoforms called “ΔS-Cys-Albumin” that quantifies cumulative exposure of archived P/S samples to thawed conditions. The relative abundance of S-cysteinylated (oxidized) albumin in P/S increases inexorably but to a maximum value under 100% when samples are exposed to temperatures > −30 °C. The difference in the relative abundance of S-cysteinylated albumin (S-Cys-Alb) before and after an intentional incubation period that drives this proteoform to its maximum level is denoted as ΔS-Cys-Albumin. ΔS-Cys-Albumin in fully expired samples is zero. The range (mean ± 95% CI) observed for ΔS-Cys-Albumin in fresh cardiac patient P/S (n = 97) was, for plasma 12–29% (20.9 ± 0.75%) and for serum 10–24% (15.5 ± 0.64%). The multireaction rate law that governs S-Cys-Alb formation in P/S was determined and shown to predict the rate of formation of S-Cys-Alb in plasma and serum samples—a step that enables back-calculation of the time at which unknown P/S specimens have been exposed to room temperature. A blind challenge demonstrated that ΔS-Cys-Albumin can detect exposure of groups (n = 6 each) of P/S samples to 23 °C for 2 h, 4 °C for 16 h, or −20 °C for 24 h—and exposure of individual specimens for modestly increased times. An unplanned case study of nominally pristine serum samples collected under NIH-sponsorship demonstrated that empirical evidence is required to ensure accurate knowledge of archived P/S biospecimen storage history. |
---|