Cargando…
Early Prediction of Soybean Traits through Color and Texture Features of Canopy RGB Imagery
Global crop production is facing the challenge of a high projected demand, while the yields of major crops are not increasing at sufficient speeds. Crop breeding is an important way to boost crop productivity, however its improvement rate is partially hindered by the long crop generation cycles. If...
Autores principales: | Yuan, Wenan, Wijewardane, Nuwan Kumara, Jenkins, Shawn, Bai, Geng, Ge, Yufeng, Graef, George L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773688/ https://www.ncbi.nlm.nih.gov/pubmed/31575995 http://dx.doi.org/10.1038/s41598-019-50480-x |
Ejemplares similares
-
Field-Based Scoring of Soybean Iron Deficiency Chlorosis Using RGB Imaging and Statistical Learning
por: Bai, Geng, et al.
Publicado: (2018) -
High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion
por: Zhang, Huichun, et al.
Publicado: (2022) -
Using RGB displays to portray color realistic imagery to animal eyes
por: Tedore, Cynthia, et al.
Publicado: (2017) -
Maize Canopy Temperature Extracted From UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring
por: Zhang, Liyuan, et al.
Publicado: (2019) -
Wide-Band Color Imagery Restoration for RGB-NIR Single Sensor Images
por: Soria, Xavier, et al.
Publicado: (2018)